APLICACIÓN DEL MODELO DE HUFF EN EL ESTUDIO DEL COMERCIO MINORISTA EN LA REGIÓN DE MURCIA

Miguel Ángel Martín Hernando
Profesor de I. B.

RESUMEN

Se aplica un modelo espacial al estudio de la actividad comercial con una finalidad doble, en principio para observar su desarrollo. en segundo lugar para obtener una primera delimitación de áreas de mercado en la Región. Los resultados muestran por una parte el reforzamiento de ideas derivadas de la simple percepción, por otra, notables disarmonías entre modelo y realidad, hecho fundamental para reflexionar sobre problemas que atañen al ámbito más complejo de la Región como es el caso de la Capital.

Palabras claves: Áreas de mercado, Centralidad Real. Jerarquía Urbana.

ABSTRACT

The application of Huff's model to the study of retail trade at Murcia region

A spatial model is applied to the estudy of trade activity with a double purpose; first to observe its development, secondly to get a first delimitation of market areas in the region. The results show on the one hand, the reinforcemente of ideas derived from simple perception and on the other, remarkable differences in harmony between model and reality which is very important to think over the problems that affect the most complex ambits of the Region as the capital, for example.

Key words: Market Areas. Real Centrality. Urban Hierarchy.

OBJETIVO

Uno de los aspectos que más interés presenta en cualquier estudio geográfico es la delimitación de áreas para el análisis de fenómenos concretos. En la actividad comercial este interés se manifiesta con fuerza, toda vez que los estudios referidos a ella son

relativamente recientes y en ocasiones controvertidos. La pretensión de este trabajo es aplicar un método para delimitar áreas de mercado basado en el modelo ideado por David L. Huff a mediados de los años sesenta ¹.

El modelo se aplicará al espacio de la Región de Murcia para analizar sus resultados y, lo que es más importante, considerar posibles modificaciones para una aplicación más acorde con este ámbito regional.

BASES CONCEPTUALES Y METODOLÓGICAS

El objetivo formulado pone de manifiesto las bases conceptuales y metodológicas seguidas en el trabajo. Se enmarca en la denominada Teoría de las Actividades Terciarias (T. A. T.) desarrollada por Berry y Garrison a partir de la Teoría de los Lugares Centrales (T. L. C.) de W. Christaller. Berry integra el modelo que nos ocupa en su obra "Geografía de los centros de mercado y distribución al por menor" (págs. 54-171) como una precisión a los modelos gravitacionales² que, como afirma el propio autor, son deterministas (pág. 53). Plantea, pues, la necesidad de modelos probabilistas que tengan en cuenta los comportamientos individuales de los consumidores.

Se utilizarán por tanto, los conceptos básicos de la T. A. T., fundamentalmente el de Centralidad Real y Jerarquía Urbana. El desarrollo del modelo gira en tomo a los valores de la variable CR (Centralidad Real), obtenida a través de procedimientos bastante difundidos! La CR expresa la categoría comercial de un núcleo en relación con el número de funciones comerciales que ofrece y del rango de tales funciones.

El concepto de Jerarquía, clave en los sistemas teóricos mencionados, hace referencia a la clasificación de los núcleos estructurada por métodos cuantitativos, en este caso medidas de dispersión.

CONTENIDO DEL MODELO DE HUFF

El modelo está ideado siguiendo los principios de Reilly y Converse que podrían sintetizarse del modo siguiente: Dos centros atraen el comercio de lugares intermedios en proporción directa al tamaño de cada centro (centralidad en nuestro caso) e inversa al cuadrado de la distancia desde los centros al lugar intermedio.

La observación de Huff a la ley de gravitación de Reilly se basó en una consideración bastante razonable: La decisión de un consumidor a la hora de dirigirse a un centro

¹ L. HUFF, DAVID: "A Probability Analysis of Shopping Center Trading Areas" Lands Economics, vol. 53 (1963). Trabajo considerado por Berry en su conocido estudio "Geografía de los centros de mercado...".

² J. REILLY, WILIAM: "The law of Retail Gravitation". N. York 1931 (Reimpresa 1953).

CONVERSE, PAUL D.: "New Laws of Retail Gravitation". Journal of Marketing. 1949.

³ PRECEDO LEDO, A. J.: "La Red Urbana de Navarra". Caja de Ahorros de Navarra. Pamplona 1976. SERRANO MARTÍNEZ, J. M.: "Jerarquía de ciudades y áreas de influencia en la Región de Murcia. Departamento de Geografía General. Murcia, 1984.

ESCOLANO UTRILLA, S.: "Comercio y territorio en Aragón". Instituto "Fernando el Católico". Zaragoza 1985.

comercial está mediatizada fundamentalmente por el número de centros más o menos atractivos que esté dispuesto a recorrer en función de la distancia. De esta forma, cada centro de un sistema tendrá más o menos probabilidad de ser visitado en alguna ocasión por un consumidor concreto; por tanto el comprador no está determinado a visitar exclusivamente uno de ellos (en la obra mencionada de Berry pág. 54).

Esta consideración se sintetizó en un modelo matemático en apariencia complejo pero sencillo en su desarrollo.

$$PA1 = \frac{\frac{S1}{TA1}}{\underset{i=1}{E} \frac{Sai}{T\alpha Ai}}$$

PA1 = Probabilidad de que un consumidor residente en A visite el centro 1

S1 = Tamaño del centro respectivo (S1.....Sr).

TA1 = Distancia de A a 1 (Tiempo).

a = Parámetro variable en función de la jerarquía.

 $\sum PAi = 1.$

El modelo se concibió para analizar potenciales de mercado de centros intraurbanos. Escolano Utrilla, en su estudio "Comercio y Temtorio en Aragón", hizo una adaptación para ser aplicado a ámbitos interurbanos. En esencia lo que hizo fue modificar la expresión de la distancia, de modo que la variable tiempo se sustituyó por distancia en Km.

El resultado de su aplicación al estudio de Aragón es interesante, especialmente por conseguir delimitaciones de áreas de mercado sin cortes nítidos. Se logra representar un gradiente de atracción comercial desde la periferia a los centros mediante curvas de isoprobabilidad. Sin duda el modelo capta más fielmente el comportarmiento real de los consumidores que el propuesto por Reilly-Converse. Además muestra áreas de indiferencia comercial en sectores que se encuentran marginados respecto a núcleos comerciales activos. Sin embargo en este trabajo no se especifican algunos pasos importantes para el desarrollo del modelo. Con el fin de reflexionar sobre esos aspectos poco claros se propone experimentar el modelo en el ámbito de la Región de Murcia.

APLICACIÓN DEL MODELO AL ESPACIO REGIONAL MURCIANO

Definición del Sistema

Antes de presentar el desarrollo del modelo, se hará referencia breve al ámbito donde se va a aplicar con el fin de concretar el Sistema objeto de estudio.

La Región de Murcia sobrepasa ligeramente el millón de habitantes, ocupando un sector algo superior a los 11.000 Km. cuadrados. La división administrativa presenta 45 municipios, unidades éstas de categoría muy dispar en extensión, población y dinamismo económico. En este nivel de análisis se tomarán las cabeceras municipales como elemen-

tos del sistema, sin olvidar que existen núcleos, calificados pedanías, de importancia comercial relevante que no se consideran en esta primera aproximación a las áreas comerciales básicas.

Consideración de variables

Centralidad Real. Los valores de esta variable se han obtenido con datos de licencias

CUADRO I

NÚCLEO	CENTRALIDAD	NÚCLEO	CENTRALIDAD
Abanilla	45.34	Lorca	822.04
Abarán	146.36	Lorquí	77.79
Águilas	397.27	Mazarrón	163.80
Albudeite	8.69	Molina	416.25
Alcantarilla	380.63	Moratalla	79.15
Aledo	9.11	Mula	176.26
Alguazas	69.07	Murcia	4147.76
Alhama	211.32	Ojós	4.31
Archena	108.97	Pliego	28.46
Beniel	85.76	P. Lumbreras	149.82
Blanca	75.24	Ricote	7.73
Calasparra	137.65	S. Javier	176.48
Campos	20.55	S. Pedro	193.35
Caravaca	268.60	T. Pacheco	210.28
Cartagena	2348.02	Torres de C.	150.18
Cehegín	179.19	Totana	289.78
Ceutí	72.63	La Unión	176.81
Cieza	469.69	Villanueva	15.60
Fortuna	45.35	Yecla	359.71
Fuente A.	103.84	Santomera	124.68
Jumilla	264.45	Los Alcázares	105.16
Librilla	54.04	Ulea	5.06
Bullas	143.14		

⁴ Las expresiones para hallar estos valores se toman de las utilizadas por la mayor parte de los estudios realizados en nuestro país en esta línea. especialmente las adaptadas por Precedo Ledo en la obra anteriormente mencionada.

$Ri = 1 - \frac{ni}{N}$	Ri ni N	= = =	Rango. Núcleos con la función "i". Total de Núcleos del sistema.
$CR = \sum_{i=1}^{i=n} (ni \times Ni)$	CR rı Ni	= = =	Centralidad Real., Rango de la función "i". Número de funciones "i" en el núcleo.

comerciales correspondientes al año 1987. Tras un recuento de funciones se hallaron los Rangos de cada una y a partir de ellos la CR⁴.

Un análisis de estos valores revela de inmediato la disparidad entre la potencia comercial de los núcleos (Cuadro I). Murcia con un valor en CR de 4147.76 casi dobla a su inmediato seguidor, Cartagena (2348.02), éste a su vez dobla ampliamente al inmediato inferior (Lorca). La observación nos lleva al establecimiento de una jerarquía que tendrá enorme valor para desarrollar el modelo. Se ha obtenido tal jerarquía a través de medidas de dispersión (media aritmética y desviación típica) calcualdas atendiendo a tres supuestos:

exceptuando Murcia capital, exceptuando Murcia y Cartagena y exceptuando Murcia, Cartagena y Lorca.

La explicación de las exclusiones es sencilla, la enorme diferencia de centralidad de estos lugares falsea los resultados del cálculo de las medidas de dispersión. Después de una reflexión sobre los valores obtenidos en las tres situaciones se dicidió tomar la última por dos motivos, por ser la que más acorde está con la realidad (así lo consideran estudios de la Región como el mencionado de Serrano Martínez) y en segundo lugar por permitir una jerarquización en la que tan sólo queda un nivel vacío (Cuadro II).

La distancia. Es la otra variable sobre la que se desarrolla el modelo. Aquí, sin embargo, surge un problema. Se necesitan las distancias de cada lugar central a todos los demás del sistema. Es fácil obtener la distancia por carretera principal entre núcleos importantes de un área, lo que no es tan fácil es obtener distancias entre núcleos dispares y alejados que tan sólo se comunican a través de redes secundarias donde la distancia y el tiempo guardan una relación poco exacta si se compara con núcleos bien comunicados. Tal inconveniente ha hecho que se tomen distancias lineales representadas en una matriz

CUADRO II. Niveles jerárquicos

C = Centralidad.

 \overline{X} = Media artimética.

S = Desviación típica.

capaz de combinar todos los núcleos (Cuadro III). Somos conscientes de la abstracción que supone esta decisión, no obstante se traba de un primer nivel de análisis en el establecimiento de áreas de mercado básicas donde sólo se consideran núcleos cabeceras municipales'.

Construcción del modelo

Se dijo anteriormente que la aparatosidad del modelo no tiene nada que ver con su sencilla aplicación. Por tanto, se va a proceder al desarrollo de la formulación sustituyendo las claves por casos concretos y verificar así tal afirmación;

a)
$$Pij = \frac{Cj}{Dij\alpha} \qquad \qquad Pij = Probabilidad \ de \ que \ un \ consumidor \ del \\ núcleo "i" \ realice \ sus \ compras \ en "j". \\ Cj = Centralidad \ de "j". \\ Dij = Distancia \ de "i" \ a "j". \\ a = Constante \ que \ depende \ de \ la \ jerarquía \\ (=1).$$

b)
$$Pij = \frac{Cj/Dij\alpha}{Cj/Dij\alpha + ... Cj/Dnj\alpha}$$

Sustituyendo por valores reales:

i = Abanilla (primer núcleo del sistema).

j = Cartagena (Se toma como ejemplo de núcleo destacado en cuanto a Centralidad Real). n = Ulea (Último núcleo del sistema).

a = (Constante =) 1.

c)
$$Pij = \frac{\frac{2348.02}{68}}{\frac{2348.02}{68} + \dots \frac{2348.02}{67}} = \frac{34.529}{2251.659} = 0.015 = 1.5\%$$

Evidentemente las probabilidades de dirigirse a Cartagena desde todos los lugares del sistema sumarían 1 ó 100 si se expresa en tantos por ciento. En el Cuadro III se exponen todos los núcleos del sistema que conforman áreas de mercado y las probabilidades de dirigirse a ellos desde todos los demás⁶.

⁵ El trabajo de Escolano Utrilla — Comercio y territorio en Aragón. 1985 — al referirse a este modelo no especifica si la distancia se toma en kms. lineales o por carretera. No obstante al tratar anteriormente el Potencial de Mercado expresa la distancia por carretera principal entre los treinta núcleos de mayor centralidas (pp. 289-290).

⁶ Se omiten núcleos que por estar integrados en áreas de jerarquía superior no manifiestan la suya propia, ejemplo de Cehegín, Jumilla, Moratalla...

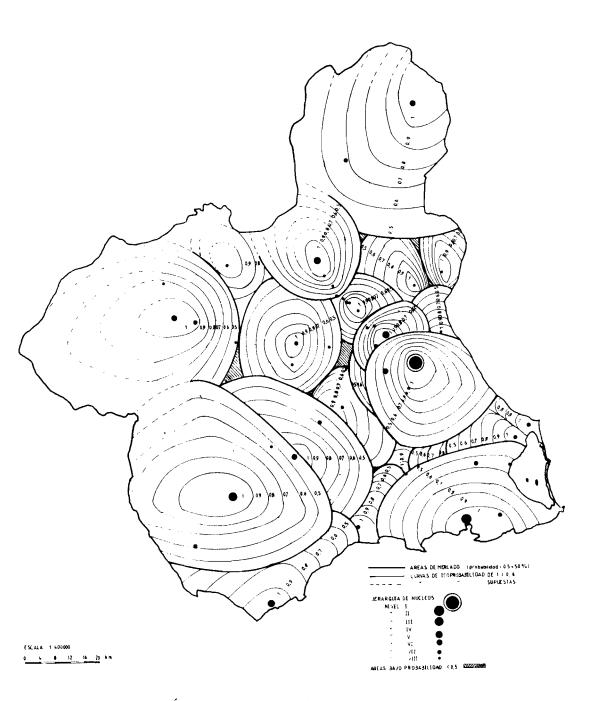


FIGURA 1. Áreas de mercado en la región de Murcia. Modelo de Huff, 1987.

Con el extenso Cuadro III se ha elaborado una cartografía de áreas de mercado que constituye la sínteses gráfica del modelo (FIG. 1). Sin embargo el proceso de construcción requiere ciertas aclaraciones:

- a) La representación de las áreas se ha hecho por estricto orden jerárquico, considerando como zona de influencia comercial indiscutible de cada centro hasta la curva del valor 0.5 (=50 por ciento de probabilidad de dirigirse a dicho lugar).
- b) Cuando un núcleo de jerarquía inferior queda englobado dentro de la curva 0.5 de otro superior, su área de mercado sólo se representa si sobrepasa claramente los límites de la línea 0.5 (ejemplo de Alhama).
- c) Si dos núcleos de igual jerarquía se engloban recíprocamente en la curva 0.5, su área de mercado se comprimirá correspondiendo a cada uno un sector proporcional a su centralidad (caso de Fortuna-Abanilla o S. Javier-S. Pedro del Pinatar).

CONCLUSIONES

La validez de un modelo está en la capacidad que tenga para medir fenómenos espaciales a través de los cuales podamos analizar objetivamente una situación y compararla con otras para establecer diferencias o similitudes. Pero lo fundamental es que se puedan cotejar los resultados con nuestro conocimiento perceptivo de esa realidad, dando explicación a las coincidencias y a los desfases respecto al modelo.

En una primera aproximación, la cartografía revela la configuración de siete áreas comerciales bien diferenciadas con centros en Lorca, Caravaca, Cieza, Yecla, Cartagena. Murcia y Mula. Sin embargo estas áreas responden a realidades muy distintas en lo que a dinamismo comercial se refiere.

- El Úrea de Lorca es la de mayor amplitud espacial. Engloba prácticamente la totalidad del municipio lorquino más el de P. Lumbreras, Aledo, gran parte del de Totana y penetra ligeramente en los de Águilas y Mazarrón. La población o consumidores potenciales sobrepasa los 90.000 hab.
 Los lugares centrales que engloba, además del núcleo de Lorca, son el de P. Lumbreras, Aledo y el de Totana, situados en las curvas de isoprobabilidad 0.7, 0.6 y 0.5 respectivamente. El gradiente hacia el centro principal no es fuerte dada la amplitud del ámbito y la dispersión de los centros subsidiarios. Donde más se eleva el gradiente es hacia el noreste, hacia Totana, es lógico si se tiene en cuenta que se trata de un núcleo competidor de jerarquía relativamente elevada.
- El Úrea de Caravaca también es de gran extensión. Abarca el municipio propio más el de Cehegín, la mayor parte del de Moratalla y Bullas. Cuenta aproximadamente con 57.000 consumidores potenciales.
 Los lugares cuentrales son Caravaca, Cehegín, Moratalla y Bullas. Cehegín, por su cercanía, forma parte del área inmediata con probabilidad muy alta (cien por cien); Moratalla se encuentra en la curva de los 0.9, mientras que Bullas marca el límite del área de atracción indiscutible en la curva 0.5, dirección esta última de máximo gradiente.

— Área de Cieza. Conforma un ámbito que engloba el municipio propio más los de Abarán, Blanca y Ricote, además de tocar el de Jumilla y Calasparra. En total unos 50.000 consumidores potenciales.

Los lugares, además de Cieza, son Abarán, Blanca y Ricote. Todos ellos en disposición longitudinal en tomo al eje del Segura, de ahí la concentración del gradiente en dirección sureste.

- Área de Yecla. Abarca los dos municipios del Altiplano y un pequeño sector del norte de los de Abanilla y Fortuna. Dispone de unos 47.000 consumidores. Los lugares destacados son Yecla y Jumilla. Tradicionalmente se han comportado como competidores, de modo que el hecho de configurar un solo área se debe a la consideración del valor de la centralidad que ha impuesto un límite claro entre los niveles jeráquicos de uno y otro núcleo (casi cien puntos de diferencia en la CR). La configuración del gradiente es bastante distinto de las áreas anteriores, las curvas son distantes, propias de áreas amplias y aisladas, con escasos núcleos en su interior. En efecto, es bien sabido que los rasgos del poblamiento en el Altiplano difieren del resto de la Región.
- Área de Cartagena. Abarca el municipio propio más los de La Unión, Los Alcázares, gran parte del de Torre Pacheco y Fuente Álamo, desbordando hacia S. Javier y Mazarrón. Se trata de un área de gran entidad en cuanto a consumidores potenciales se refiere, unos 210.000.

Los lugares centrales son Cartagena, La Unión, Torre Pacheco, Los Alcázares y Fuente Álamo. Se encuentran distribuidos desde la curva de isoprobabilidad con valor 1 de La Unión, hasta la de 0.5 de Fuente Álamo. El área presenta desviación clara hacia el este, con mayor distancia entre las curvas, coincidiendo con los sectores industriales y mineros de La Unión y los de actividad turística del Mar Menor.

— Área de Murcia. Comprende el municipio propio, el de Alcantarilla, parte del de Molina, Las Torres, Santomera y Beniel. La potencia de consumidores está en tomo a los 370.000, además, el espacio físico es de los más reducidos de los caracterizados hasta ahora.

Los lugares del área son la propia Capital Regional y Alcantarilla. Tanto Molina, como Las Torres, Santomera y Beniel están configurando otras áreas secundarias periféricas. El gradiente de las curvas es elevado, especialmente en dirección noroeste.

Las particularidades de este área hace que la comparación entre modelo y realidad perceptiva ayude a extraer conclusiones interesantes: Murcia capital es el centro de un ámbito densamente poblado, con núcleos satélites que están muy relacionados con el centro principal en cuanto a actividad comercial se refiere. Por tanto, el área de influencia real de la capital podríamos afirmar que corresponde a la suya propia más la de esos núcleos satélites que están dentro o tangenciales a la curva 0.5 (Molina, Santomera, Alcantarilla).

— Área de Mula. Comprende su municipio más el de Pliego, Albudeite, parte del de Campos y del de Bullas. Su potencial de consumidores es bajo en relación con áreas anteriores, unos 20.000 hab.

Los núcleos que comprende son Mula, Pliego y Albudeite.

El primero dentro de la curva de isoprobabilidad 0.9, el segundo dentro de la 0.6, de modo que el gradiente se concentra hacia el este.

Si el área anterior era especial por su potencial de consumidores, dinamismo, complejidad de la periferia, etc., ésta es todo lo contrario. Se ha configurado como área de mercado nítida por la inexistencia de núcleos cercanos competidores, de forma que .llena un vacío entre áreas más dinámicas de los márgenes regionales (Caravaca, Murcia, Lorca...).

Quizás sea interesante seguir caracterizando áreas, incluso profundizar más en las anteriores, pero ésta no es la pretensión del trabajo. Por tanto, vamos a concluir con una interpretación global del resto de las áreas que se manifiestan menos nítidas que las anteriores:

- En conjunto la Región dispone un grupo de áreas comerciales bien definidas que ocupan la periferia con centros en las ciudades de jerarquía superior. El resto de las áreas se ordenan de forma que manifiestan la importancia de otros elementos espaciales (relieve, comunicaciones, red hidrográfica...).
- Si se toma Murcia como centro principal y se observa el mapa saltan a la vista los hechos siguientes. El eje formado por el valle del Segura y la Nacional 301 ordena un rosario continuo de áreas que se constriñen unas a otras con centros claves en Murcia, Molina, Archena y Cieza. Al este del eje, Fortuna y Abanilla se disputan un sector aparentemente marginal⁷.
- Otro eje complejo es el que sigue la Nacional 304 y el valle del Guadalentín hasta Lorca. Desde este centro hasta Murcia se solapan áreas de indudable importancia comercial como Totana y Alhama.
- No podemos pasar por alto el área de Águilas. El centro ocupa lugar destacado en la jerarquía pero la potencia de Lorca constriñe su expansión hacia el noroeste teniendo que desarrollar su influencia a lo largo del sector costero, especialmente hacia Mazarrón.

Después de estas consideraciones se puede afirmar que el modelo es válido para aproximamos a la delimitación de áreas comerciales en la Región. Muchas de las áreas definidas coinciden con las que podemos distinguir mediante la simple percepción, de manera que el modelo corrobra de forma objetiva lo que eran apreciaciones más o menos acertadas. Se pueden objetar ciertos desfases entre realidad y modelo en el caso de Murcia capital, sin embargo no es un obstáculo sino un punto de referencia para reflexionar sobre las causas del supuesto desfase. Como se ha indicado, se trata de un fenómeno espacial complejo dada la peculiaridad del crecimiento en las últimas décadas, crecimiento que ha conformado un área urbana englobando las numerosas pedanías periféricas y núcleos de gran peso demográfico y económico que se comportan como satélites.

⁷ No hay que olvidar núcleos alicantinos como Crevillente, Orihuela o Albatera que han quedado fuera del sistema definido, pero sin duda extienden su área de mercado hacia este sector. Por este motivo se hace la precisión "aparentemente marginal".

APLICACIÓN DEL MODELO DE HUFF EN EL ESTUDIO DEL COMERCIO MINORISTA

BIBLIOGRAFÍA

- BEAVON, K. S. O.: Geografía de las actividades terciarias. Oikos-Tau. Barcelona 1981.
- BERRY, B. J. L.: Geografía de los centros de mercado y distribución al por menor. Vicens Vives. Barcelona 1971
- ESCOLANO UTRILLA, S.: Comercio y territorio en Aragón. Evolución y localización del comercio minorista. Instituto "Fernando el Católico". Zaragoza 1985.
- FONTANA TARRATS. J. M. (dirige): Atlas comercial de España. Consejo Superior de Cámaras de Comercio. Madrid 1963.
- GARCÍA LAHIGUERA, F.: Las áreas españolas de gravitación comercial. Información Comercial Española. Madrid. n.º 647, 1987.
- HUFF. D. L.: A Probability Analysis of Shopping Center Trading Areas. Lands Economics, vol. 53, 1963.
- PRECEDO LEDO, A. J.: La red urbana de Navarra. Caja de Ahorros de Navarra. 1976.
- REILLY, W. L.: The law of retail gravitation. N. York 1931. (Reimpresa 1953).
- SERRANO MARTÍNEZ, J. M.: Jerarquía de ciudades y áreas de influencia en la Región de Murcia. Dpto. de Geografía. Cámara de Comercio. CajaMurcia. 1984.
- SERRANO MARTÍNEZ, J. M.: Bienes de rango elevado en el comercio al por menor. Lugares centrales equipados en la Región de Murcia. Geographicalia. Univ. de Zaragoza. nos. 19-20. 1983.
- ZIPF, G. K.: Human behavior and the principle of least effort. Addison Wesley. Camgrige. 1951.

CUADRO III Núcleos que conforman áreas de mercado

-	Aba	Abanilla	Ag	Águilas	Alcan	tarilla	All	Alhama	Ar	Archena	Cala	Calasparra
	۵	Ь	Q	ь	۵	ОР	D	Ь	D	Ь	Q	Ь
ABANILLA	0		102	0.015	31	0.017	51	0.013	24	0.015	28	0.016
ABARÁN	31	0.025	06	0.017	59	0.018	40	0.017	13	0.028	56	0.036
ÁGUILAS	102	0.008	0		71	0.007	51	0.013	83	0.004	92	0.010
ALBUDEITE	38	0.022	71	0.022	16	0.033	20	0.034	13	0.028	35	0.027
ALCANTARILLA	31	0.025	71	0.022	0		23	0.029	18	0.020	51	0.018
ALEDO	65	0.012	43	0.036	37	0.014	15	0.045	43	0.008	20	0.019
ALGUAZAS	25	0.031	78	0.020	6	0.058	27	0.025	∞	0.045	4	0.021
ALHAMA	51	0.015	51	0.030	23	0.023	0		31	0.012	49	0.019
ARCHENA	24	0.033	83	0.018	18	0.029	31	0.022	0		37	0.025
BENIEL	18	0.044	88	0.017	20	0.026	26	0.024	26	0.014	4	0.015
BLANCA	59	0.027	88	0.017	27	0.019	37	0.018	10	0.036	59	0.032
BULLAS	28	0.014	72	0.021	40	0.013	31	0.022	34	0.011	21	0.044
CALASPARRA	28	0.014	92	0.017	51	0.010	49	0.014	37	0.010	0	
CAMPOS	33	0.024	73	0.021	14	0.037	22	0.031	10	0.036	37	0.025
CARAVACA	73	0.011	91	0.019	28	0.00	48	0.014	20	0.007	20	0.047
CARTAGENA	89	0.012	58	0.026	46	0.011	48	0.014	63	900.0	94	0.010
CEHEGÍN	29	0.012	79	0.019	52	0.010	40	0.017	4	0.008	18	0.052
CEUTÍ	25	0.031	80	0.019	13	0.040	28	0.024	2	0.072	41	0.023
CIEZA	24	0.023	94	0.016	35	0.015	43	0.016	18	0.020	25	0.037
FORTUNA	∞	0.098	94	0.016	25	0.021	45	0.015	16	0.022	51	0.018
FUENTE ÁLAM.	55	0.014	51	0.030	28	0.019	26	0.026	45	0.008	73	0.013
JUMILLA	38	0.021	123	0.012	27	0.00	70	0.010	40	0.00	43	0.022
LIBRILLA	47	0.017	28	0.026	15	0.035	7	960.0	26	0.014	49	0.019
LORCA	108	0.007	32	0.048	54	0.010	31	0.022	19	9000	62	0.015

CUADRO III (continuación) Núcleos que conforman áreas de mercado

ij,	Abanilla	nilla	Ag	Aguilas	Alcan	Alcantarilla	All	Alhama	Arc	Archena	Cala	Calasparra
	Q	Ь	D	Ь	D	а	Q	ь	D	Ь	D	Ь
ORQUÍ	23	0.034	80	0.019	13	0.040	30	0.023	7	0.051	42	0.022
AAZARRÓN	72	0.011	31	0.050	43	0.012	31	0.022	57	9000	78	0.012
MOLINA	22	0.036	79	0.019	6	0.058	29	0.023	=	0.033	48	0.019
MORATALLA	74	0.011	91	0.017	63	0.008	99	0.012	53	0.007	17	0.055
MULA	43	0.018	72	0.021	26	0.020	22	0.031	21	0.017	28	0.033
MURCIA	26	0.030	76	0.020	∞	0.065	30	0.023	21	0.017	57	0.016
SÓIC	28	0.028	81	0.019	22	0.024	35	0.019	5	0.072	32	0.029
LIEGO	47	0.017	99	0.023	25	0.021	17	0.040	23	0.016	32	0.029
PUERTO LUMB.	66	800.0	26	0.059	69	0.008	48	0.014	11	0.005	9/	0.012
SICOTE	29	0.027	85	0.018	24	0.022	34	0.020	9	090.0	31	0.030
3. JAVIER	48	0.016	81	0.019	38	0.014	52	0.013	54	0.007	68	0.010
AN PEDRO	46	0.017	85	0.018	40	0.013	99	0.012	54	0.007	91	0.010
<i>FORRE PACHECO</i>	52	0.015	19	0.023	34	0.015	43	0.016	51	0.007	85	0.011
AS TORRES C.	27	0.029	75	0.020	7	0.074	26	0.026	6	0.040	45	0.021
FOTANA	2	0.012	41	0.037	34	0.015	12	0.056	43	0.008	54	0.017
A UNIÓN	99	0.012	99	0.023	49	0.011	54	0.013	65	900.0	86	0.010
VILLANUEVA	26	0.030	84	0.018	21	0.025	33	0.020	4	0.000	32	0.029
/ECLA	46	0.017	140	0.011	72	0.007	68	0.008	57	900.0	19	0.014
SANTOMERA	16	0.049	98	0.018	18	0.029	. 40	0.017	22	0.016	09	0.016
OS ALCÁZARES	54	0.015	74	0.021	41	0.013	52	0.013	57	900.0	92	0.010
ULEA	26	0.030	84	0.018	21	0.025	33	0.020	4	0.000	32	0.029

D=Distancia de "j" a "i".
P =Probabilidad de dirigirse de "i" a "j".

CUADRO III (continuación) Núcleos que conforman áreas de mercado

	Car	Caravaca	Cart	Cartagena	Ö	Cieza	For	tuna	Fue	Fuente Al.	Ju	Jumilla
" I "	۵	Ь	۵	Ь	۵	Ь	Q	D P	۵	Ь	D	۵.
ABANILLA	73	0.013	89	0.015	34	0.018	∞	0.081	55	0.016	38	0.031
BARÁN	42	0.022	77	0.014	5	0.121*	28	0.023	57	0.016	31	0.038
GUILAS	80	0.012	57	0.018	94	900.0	94	0.007	51	0.018	123	0.010
NEUDEITE	42	0.022	59	0.018	24	0.025	53	0.022	39	0.023	50	0.024
LCANTARILLA	58	0.016	46	0.023	35	0.017	25	0.026	28	0.032	57	0.021
VLEDO	42	0.022	57	0.018	51	0.012	58	0.011	36	0.025	79	0.015
ALGUAZAS	54	0.017	55	0.019	27	0.022	18	0.036	38	0.024	48	0.025
ALHAMA	48	0.019	48	0.022	43	0.014	45	0.014	56	0.034	70	0.017
ARCHENA	20	0.019	63	0.017	18	0.034	16	0.040	45	0.020	40	0.030
BENIEL	75	0.012	50	0.021	42	0.014	19	0.034	40	0.022	55	0.022
LANCA	4	0.021	73	0.014	8	0.076	21	0.031	54	0.017	33	0.036
BULLAS	18	0.051	78	0.013	31	0.020	50	0.013	57	0.016	99	0.021
ALASPARRA	20	0.046	94	0.011	25	0.000	51	0.013	73	0.012	43	0.028
AMPOS	45	0.021	58	0.018	23	0.026	25	0.026	39	0.023	49	0.024
ARAVACA	0		96	0.011	42	0.014	65	0.010	74	0.012	63	0.019
ARTAGENA	96	0.010	0		81	0.007	65	0.010	21	0.043	102	0.012
CEHEGÍN	9	0.154*	90	0.012	37	0.016	19	0.010	69	0.013	59	0.020
CEUTÍ	52	0.018	63	0.017	23	0.026	18	0.036	4	0.020	45	0.026
CIEZA	42	0.022	81	0.013	0		26	0.025	19	0.015	27	0.044
PORTUNA	65	0.014	65	0.016	26	0.023	0		51	0.018	37	0.032
UENTE ÁLAM.	74	0.013	21	0.050	19	0.010	51	0.013	0		85	0.014
UMILLA	62	0.015	102	0.010	27	0.022	37	0.017	85	0.011	0	
IBRILLA	51	0.018	45	0.023	40	0.015	38	0.017	25	0.036	99	0.018
OPCA	2	0.018	63	0.017	69	0000	75	0000	47	0100	90	0.010

CUADRO III (continuación) Núcleos que conforman áreas de mercado

"J.	Cara	avaca.	Cart	Cartagena	ؾ	Cieza	For	Fortuna	Fue	Fuente Al.	Jul	Jumilla
	Q	Д	Q	Ь	Q	а	۵	Ь	Q	а	Q	Ь
ORQUÍ	52	0.018	58	0.018	23	0.026	15	0.043	4	0.020	4	0.027
MAZARRÓN	75	0.012	29	0.036	72	0.008	29	0.010	20	0.045	86	0.012
MOLINA	28	0.016	54	0.019	28	0.022	16	0.040	37	0.024	48	0.025
MORATALLA	10	0.093	103	0.010	42	0.014	49	0.010	82	0.011	28	0.020
MULA	33	0.028	99	0.016	23	0.026	36	0.018	45	0.020	51	0.023
MURCIA	78	0.012	45	0.023	38	0.016	22	0.029	29	0.031	57	0.021
SÓCO	46	0.020	89	0.015	13	0.047	19	0.034	50	0.018	37	0.032
PLIEGO	34	0.027	63	0.017	29	0.021	40	0.016	42	0.021	57	0.021
PUERTO LUMB.	19	0.015	73	0.014	83	0.007	52	0.012	09	0.015	110	0.011
RICOTE	52	0.018	69	0.015	12	0.051	21	0.031	50	0.018	36	0.033
S. JAVIER	96	0.010	26	0.040	71	0.009	49	0.013	30	0.030	98	0.014
SAN PEDRO	96	0.010	31	0.034	71	0.009	48	0.013	36	0.025	84	0.014
TORRE PACHECO	06	0.00	16	0.065	69	0.000	51	0.013	19	0.047	87	0.014
LAS TORRES C.	55	0.017	53	0.020	29	0.021	20	0.032	35	0.026	50	0.024
TOTANA	49	0.019	49	0.021	51	0.012	57	0.011	29	0.031	80	0.015
LA UNIÓN	102	0.00	6	0.116*	82	0.007	99	0.010	27	0.033	103	0.011
VILLANUEVA	47	0.000	49	0.016	15	0.040	18	0.036	48	0.019	38	0.031
YECLA	87	0.011	114	0.00	20	0.012	49	0.013	86	0.009	24	0.049
SANTOMERA	71	0.013	52	0.020	38	0.016	15	0.043	39	0.023	52	0.023
LOS ALCÁZARES	92	0.010	20	0.052	74	0.008	54	0.012	28	0.032	92	0.013
ULEA	47	0.020	6	0.016	14	0.043	18	0.036	48	0.019	38	0.031

D=Distancia de "j" a "i".
P =ProbabilidAd de dirigirse de "i" a "j".

CUADRO III (continuación) Núcleos que conforman áreas de mercado

.f.,	7	Lorca	Maz	Mazarrón	Mo	Molina	Σ	Mula	Ĭ	Murcia	S. J	S. Javier
,cl>,		۵.	۵	Ь	Q	Ь	Q	Ь	D	Ь	D	Ь
ABANILLA	108	0.010	72	0.015	22	0.018	43	0.013	26	0.022	48	0.017
ABARÁN	65	0.017	89	0.016	24	0.017	20	0.029	34	0.017	65	0.013
ÁGUILAS	32	0.035	31	0.036	79	0.005	72	0.008	77	0.008	81	0.010
ALBUDEITE	49	0.023	46	0.023	17	0.024	6	0.064	24	0.024	53	0.016
ALCANTARILLA	24	0.021	43	0.026	6	0.045	26	0.022	∞	0.073	38	0.022
ALEDO	18	0.063	32	0.035	43	0.009	29	0.020	44	0.013	65	0.013
ALGUAZAS	28	0.019	51	0.022	4	0.101*	22	0.026	13	0.045	46	0.018
ALHAMA	31	0.036	31	0.036	30	0.013	22	0.026	30	0.019	52	0.016
ARCHENA	61	0.018	57	0.019	11	0.037	21	0.027	21	0.028	54	0.015
BENIEL	74	0.015	57	0.019	18	0.022	43	0.013	13	0.045	31	0.027
BLANCA	9/	0.015	99	0.017	20	0.00	19	0.030	30	0.019	63	0.013
BULLAS	43	0.026	29	0.019	41	0.010	16	0.036	48	0.012	78	0.011
CALASPARRA	62	0.018	28	0.014	48	0.008	28	0.020	57	0.010	68	0.00
CAMPOS	51	0.022	49	0.023	12	0.034	12	0.048	20	0.029	52	0.016
CARAVACA	51	0.022	75	0.015	28	0.007	33	0.017	99	0.00	96	0.000
CARTAGENA	63	0.018	53	0.038	54	0.007	99	0.00	45	0.013	26	0.032
CEHEGIN	47	0.024	70	0.016	51	0.008	27	0.021	9	0.010	8	0.00
CEUTI	28	0.019	53	0.021	9	0.067	19	0.030	16	0.036	49	0.017
CIEZA	69	0.016	72	0.015	78	0.014	23	0.025	38	0.021	71	0.012
FORTUNA	75	0.015	6 2	0.017	16	0.025	36	0.016	22	0.026	49	0.017
FUENTE ALAM.	86	0.012	86	0.011	48	0.008	51	0.011	57	0.010	98	0.010
LIBRILLA	39	0.035	73	0.015	23	0.017	21	0.027	22	0.026	46	0.018
LORCA	0		40	0.020	09	0.007	45	0.013	61	0.010	78	0.011
LORQUI	9	0.019	53	0.021	S	0.080	22	0.026	15	0.039	48	0.017

CUADRO III (continuación) Núcleos que conforman áreas de mercado

"f.,	2	Lorca	Maz	Mazarrón	Ĭ	Molina	Σ	Mula	M	Murcia	S. J	S. Javier
.d.,	Q	Ь	D	Ь	Q	Ь	Q	Ь	Q	Ь	D	А
MAZARRÓN	40	0.208	0		51	0.008	52	0.011	47	0.012	48	0.017
MOLINA	09	0.019	51	0.022	0		25	0.022	Ξ	0.053	43	0.019
MORATALLA	09	0.019	82	0.014	09	0.007	38	0.015	71	0.008	102	0.008
MULA	45	0.025	52	0.021	25	0.016	0		32	0.018	63	0.013
MURCIA	62	0.018	47	0.024	Ξ	0.037	32	0.018	0		32	0.026
sorc	62	0.018	61	0.018	16	0.025	17	0.034	26	0.022	58	0.014
PLIEGO	39	0.029	47	0.024	27	0.015	9	0.095	33	0.018	62	0.013
PUERTO LUMB.	16	0.000	4	0.025	49	900.0	61	0.009	17	0.008	06	0.000
RICOTE	19	0.018	62	0.018	18	0.022	18	0.030	28	0.021	09	0.014
. JAVIER	78	0.014	48	0.023	43	0.009	63	0.009	32	0.018	0	
AN PEDRO	82	0.014	53	0.021	4	0.009	99	0.009	34	0.017	5	0.166*
TORRE PACHECO	99	0.017	36	0.031	4	0.010	57	0.010	31	0.018	13	0.064
AS TORRES C.	57	0.020	48	0.023	4	0.101*	22	0.026	Ξ	0.053	4	0.019
FOTANA	21	0.054	25	0.044	4	0.010	31	0.018	41	0.014	59	0.014
LA UNIÓN	71	0.016	38	0.029	99	0.007	71	0.008	46	0.013	21	0.040
/ILLANUEVA	62	0.018	09	0.018	14	0.029	18	0.032	24	0.024	57	0.015
YECLA	116	0.010	110	0.010	63	9000	71	0.008	70	0.008	93	0.00
SANTOMERA	71	0.016	57	0.019	14	0.029	39	0.015	12	0.048	34	0.024
OS ALCÁZARES	74	0.015	43	0.026	46	0.010	65	0.009	36	0.016	∞	0.104*
JLEA	62	0.018	09	0.018	14	0.029	18	0.032	24	0.024	57	0.015

D=Distancia de "j" a "i". P=Probabilidad de dirigirse de "i" a "j".

	antomera	D P	5 0.038	5 0.017	5 0.007	5 0.023	3 0.024	5 0.011	3 0.034	0.015	2 0.028	4 0.152*	1 0.020		_		00:00							2 0.012	4 0.018	0.009
	S		Ξ	3,	×	7	18	5.	18	4	23	7	3	55	9	27	7	52	99	20	38	15	39	5,	χ,	7
cado	Yecla	Ь	0.034	0.031	0.011	0.023	0.022	0.016	0.025	0.018	0.028	0.025	0.030	0.019	0.023	0.023	0.018	0.014	0.019	0.026	0.031	0.032	0.016	990.0	0.019	0.014
ión) de mer	Ye	Q	46	51	140	69	72	100	2	68	57	4	53	81	<i>L</i> 9	<i>L</i> 9	87	114	83	61	50	49	86	24	83	116
CUADRO III (continuación) s que conforman áreas de r	Totana	۵	0.012	0.016	0.019	0.027	0.023	0.114*	0.020	990.0	0.019	0.015	0.017	0.023	0.015	0.023	0.016	0.016	0.018	0.020	0.016	0.014	0.027	0.010	0.042	0.038
DRO III confor	Tot	۵	64	50	41	56	34	7	39	12	43	53	48	34	54	34	49	49	44	40	51	57	56	80	19	21
CUADRO III (continuación) Núcleos que conforman áreas de mercado	Torre P.	М	0.017	0.014	0.013	0.017	0.026	0.017	0.020	0.020	0.017	0.026	0.014	0.012	0.010	0.010	0.010	0.055	0.011	0.019	0.013	0.017	0.046	0.010	0.022	0.013
	To	۵	52	64	<i>L</i> 9	20	34	52	43	43	51	33	61	71	85	84	96	16	83	46	69	51	19	87	39	99
	Pedro	Ь	0.020	0.014	0.011	0.016	0.023	0.013	0.019	0.016	0.017	0.030	0.015	0.011	0.010	0.017	0.00	0.029	0.010	0.018	0.013	0.010	0.025	0.011	0.018	0.011
	San		46																			48	36	84	20	82
	";"	,.l.,	ABANILLA	ABARÁN	ÁGUILAS	ALBUDEITE	ALCANTARILLA	ALEDO	ALGUAZAS	ALHAMA	ARCHENA	BENIEL	BLANCA	BULLAS	CALASPARRA	CAMPOS	CARAVACA	CARTAGENA	CEHEGÍN	CEUTÍ	CIEZA	FORTUNA	FUENTE ÁLAM.	JUMILLA	LIBRILLA	LORCA

CUADRO III (continuación) Núcleos que conforman áreas de mercado

	San	San Pedro	Tor	Torre P.	To	Totana	Y	Yecla	Sant	Santomera	
.d»	Q	Ь	a	۵	۵	٩	a	а	Q	А	
LORQUÍ	48	0.019	46	0.019	42	0.019	19	0.026	18	0.034	
MAZARRÓN	53	0.017	36	0.024	25	0.032	110	0.014	57	0.011	
MOLINA	4	0.021	41	0.021	4	0.019	63	0.025	14	0.043	
MORATALLA	104	0.00	96	0.000	58	0.014	82	0.019	75	0.008	
MULA	99	0.014	57	0.015	31	0.026	71	0.022	39	0.016	
MURCIA	34	0.027	31	0.028	4	0.019	70	0.022	12	0.051	
SOCC	09	0.015	57	0.015	45	0.018	56	0.028	27	0.023	
PLIEGO	65	0.014	99	0.016	25	0.032	78	0.020	48	0.013	
PUERTO LUMB.	95	0.010	99	0.013	36	0.022	132	0.012	87	0.007	
RICOTE	19	0.015	58	0.015	4	0.018	55	0.029	29	0.021	
3. JAVIER	2	0.181*	13	0.067	59	0.014	93	0.017	34	0.018	
SAN PEDRO	0		18	0.048	62	0.013	92	0.017	34	0.018	
<i>FORRE PACHECO</i>	18	0.050	0		48	0.017	46	0.016	37	0.016	
AS TORRES C.	45	0.020	41	0.021	37	0.022	99	0.024	18	0.034	
FOTANA	62	0.015	48	0.018	0		66	0.016	51	0.012	
LA UNIÓN	25	0.036	15	0.058	57	0.014	110	0.014	51	0.012	
/ILLANUEVA	28	0.016	99	0.016	4	0.018	99	0.028	26	0.023	
YECLA	92	0.010	4	0.00	66	0.008	0		62	0.010	
SANTOMERA	34	0.027	37	0.024	51	0.016	62	0.025	0		
LOS ALCÁZARES	12	9200	6	0.097	57	0.014	66	0.016	40	0.015	
ULEA	58	0.016	99	0.016	44	0.018	57	8000	96	0.003	

D=Distancia de "j" a "i". P=Probabilidad de dirigirse de "i" a "j".

0