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RESUMEN 
La demostración habitual del Segundo Teorema de Incompletud de Gödel a partir 

de teorías débiles como IΣ1 es larga y técnicamente intrincada. Raramente se dan todos 
los detalles y en muchos casos se omiten completamente apelando a la capacidad de lec-
tor para completarlos. En la primera parte de este artículo presentamos una guía de los 
principales puntos técnicos de la demostración habitual del Segundo Teorema de In-
completud de Gödel a partir de teorías débiles. En la segunda parte presentamos una 
demostración distinta y más simple para la Teoría de Conjuntos de Zermelo-Fraenkel 
debida a T. Jech [Jech (1994)], y observamos que puede ser extendida de forma que en-
globe teorías débiles, evitando así muchas de las complicaciones técnicas que requieren 
las demostraciones habituales. 

 
ABSTRACT 

The usual proof of Gödel’s second incompleteness theorem for weak theories like 
IΣ1 is long and technically cumbersome. The details are rarely given in full and in most 
cases they are skipped altogether with dismissing vague sentences alluding to the 
reader’s ability to fill them in. In the first part of this note we provide a guide through the 
main technical points of the usual proof of Gödel’s theorem for weak theories. In the 
second part we present a different and simpler proof of the theorem for Zermelo-
Fraenkel Set Theory, due to T. Jech [Jech (1994)], and we observe that it can be 
stretched to encompass weak theories, while avoiding many of the technicalities that are 
required in the usual proofs. 
 
 

I. INTRODUCTION 
 

The importance of Gödel’s incompleteness theorems [Gödel (1967)] for 
both Logic and the Foundations of Mathematics can hardly be overstated. They 
not only represented a heavy blow on Hilbert’s Program it its original form, but 
they also changed forever the role of Logic in Mathematics, not to mention the 
endless discussions to our day about their philosophical significance. 

The theorems can be informally stated as follows: 
 

THEOREM (Gödel’s first incompleteness theorem) Let T be an axioma-
tizable theory that contains (a small fragment of) arithmetic. Then there is a 
sentence θ such that if T is consistent, then T does not prove θ, and if T satis-
fies certain additional consistency hypothesis, then T does not prove the ne-
gation of θ either. 
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THEOREM (Gödel’s second incompleteness theorem) Let T be an axio-

matizable theory that contains (a small fragment of) arithmetic. If T is consis-
tent, then T does not prove that T is consistent. 
 

For the usual first-order theories of Arithmetic and Set Theory, the first 
theorem is an easy corollary of the second. In this note we shall concentrate 
on the second incompleteness theorem. In the first section we provide a guide 
through the main technical points in the proof of the theorem for weak theo-
ries, aiming at its (almost) optimal form. Next, we present a short proof of the 
theorem, due to T. Jech [Jech (1994)], for Zermelo-Fraenkel Set Theory (ZF). 
Finally, we show how Jech’s proof can be stretched to encompass weaker 
theories, like Peano’s Arithmetic (PA) and Σ1-Induction (IΣ1), which is essen-
tially the weakest theory for which the Theorem holds. These proofs avoid 
many of the technicalities that are required in the usual proofs of the Theorem 
as outlined in the first section of this note. 
 
 

II. THE MAIN INGREDIENTS IN THE PROOF OF THE INCOMPLETENESS 
THEOREMS 

 
The main ingredients in the usual proof of Gödel’s second incomplete-

ness theorem for a given theory T (in a language that contains the language of 
arithmetic) are the following:  
 

• Recursive arithmetization of the syntax of the language of T. 
• Σ1-definability of the recursively enumerable predicates. 
• Provability in T of true Σ1 sentences of the language of arithmetic. 
• Diagonalization. 
• Provability in T of some of the properties of the Provability predi-

cate BewT. 
 

The first four ingredients are also present in the first incompleteness 
theorem. The fifth, which is harder to prove, is the crucial step that yields the 
stronger second incompleteness theorem. 
 
II.1 Recursive arithmetization of the syntax of the language of T 

Given a countable formal language ℒ, we can identify the symbols with 
natural numbers and we can code, in a (primitive) recursive way, the syntax 
of ℒ. This is possible because the syntactic notions, like formulas and proofs 
are defined recursively. The way the coding is done is quite irrelevant, as 
long as it is recursive, so that if the set of symbols is a recursive set of natural 
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numbers, then so are the sets of codes of terms, formulas and proofs. We also 
need that the ternary relation Sb consisting of all 〈x,y,z〉 such that z is (the 
code of) the result of substituting the only free variable of the formula (coded 
by) x by the term (coded by) y, is recursive. 

The main point is that if T is a recursively enumerable set of formulas 
of ℒ (i.e., the set of codes of formulas of T is recursively enumerable), then 
the provability predicate BewT, consisting of the codes of all theorems of T is 
also a recursively enumerable set. 
 
II.2 Σ1-definability of the Recursively Enumerable Predicates 

The language of arithmetic consists of two binary function symbols + 
and ⋅, one unary function symbol S and one constant symbol 0. The ordering 
relation ≤ is defined as x ≤ y iff ∃z(x + z = y). 

A Σ1 formula (in the language of aritmetic) is a formula of the form 
∃xϕ(x,y1,...,yk), where ϕ(x,y1,...,yk) is a bounded formula, i.e., a formula whose 
quantifiers are all bounded, namely, they are of the form ∃y ≤ z or ∀y ≤ z. 

Every recursively enumerable set of natural numbers is Σ1 definable in 
the standard model 〈ℕ, + , ⋅, S, 0〉. In fact, this is if and only if. In particular, 
there are Σ1 formulas Sb(x,y,z) and BewT(x) that define the substitution rela-
tion Sb and the provability predicate BewT. 
 
II.3 Provability in T of true Σ1 sentences of the language of arithmetic. 

We write n  instead of the term  
 

...0
n times

SSSS
−

14243  

 
The terms n  are called numerals. 

The following fragment of arithmetic is called R0. It is given by four in-
finite groups of axioms: 
 

1. n m p+ = , for all m,n,p∈ℕ such that n m p+ = . 
n m p⋅ = n m p⋅ =2. , for all m,n,p∈ℕ such that . 
n m≠ n m3. , for all m,n∈ℕ such that ≠ . 

4. And the universal closure of the formulas that are of the form:  
 

( 0 1 ... ),x n x x x n≤ → = ∨ = ∨ ∨ =  
 

for all n∈ℕ. 
R0 has the following important feature:  
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Every true Σ1 sentence in the language of arithmetic is provable in R0. 
 

The reason is that every model M of the first three groups of axioms 
satisfies the diagram of 〈ℕ, + , ⋅, S, 0〉, hence all sentences without quantifiers 
are absolute between M and ℕ. The fourth group of axioms ensures that 
every sentence in the language of arithmetic with only bounded quantifiers is 
R0-equivalent to a sentence without quantifiers. Hence, all Σ1 sentences that 
hold in ℕ also hold in M. It can be easily checked that R0 is the weakest 
fragment of arithmetic that has this property. 

The following property of the provability predicate BewT will play a 
crucial role in the proof of the incompleteness theorem: Since every true Σ1 
sentence is provable in T, we have that for all formulas ϕ,  
 

D0. T ⊢ ϕ implies T ⊢ BewT(ÍϕÎ) 
 
where ÍϕÎ is the Gödel notation for the numeral corresponding to the code of 
ϕ, i.e., if n codes ϕ, ÍϕÎ = n . 
 
II.4 Diagonalization 

If a is a term or a formula, let [a] denote the code of a. If n = [a] we 
write, following Gödel, ÍaÎ instead of n . 
 

THEOREM (Gödel’s diagonalization theorem) Let T be a theory that 
contains R0. Then for every formula ϕ(x), where x is the only free variable, 
there is a sentence θ such that  
 

T ⊢ (θ ↔ ϕ(ÍθÎ)). 
 

The proof of the diagonalization theorem hinges on the following: 
 

(∗∗) Since Sb(x,y ,z ) is Σ1, by the provability in R0 of the true Σ1 sen-
tences, if Sb(m,n , p ), then T ⊢ ( , , )Sb m n p , for all m,n,p∈ℕ. 

 
The proof of the diagonalization theorem then goes as follows: 
Let 

 
n = [∀z(Sb(x , Íx Î ,z ) → ϕ(z))]. 

 
Let θ be the sentence  

 
∀z(Sb( n ,Í n Î ,z ) → ϕ(z)). 
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Note that Sb(n,[ n ], [θ]) holds. 
By (∗),  

 
T ⊢ Sb( n ,Í n Î,ÍθÎ). 

 
Clearly,  

 
⊢ (θ→(Sb( n ,Í n Î,ÍθÎ) → ϕ(ÍθÎ))). 

 
Hence,  
 

T ⊢ (θ → ϕ(ÍθÎ)) 
 

On the other hand, since T ⊢ Sb( n ,Í n Î,ÍθÎ), we have 
 

T ⊢ (ϕ(ÍθÎ) → ∀z(Sb( n ,Í n Î,z ) → ϕ(z))) 
 
But the consequent is precisely θ. 
 

For the proof of both incompleteness theorems, we need the diagonali-
zation theorem for only one particular instance, namely, the formula 
¬BewT(ÍxÎ), 
 
II.5 Provability in T of some of the properties of the Provability predicate. 

Among the properties of the provability predicate BewT, the following 
two are relevant for the proof of the second incompleteness theorem: 

For all formulas ϕ and ψ,  
 

D1. (BewT(ÍϕÎ) ∧ BewT(Íϕ → ψÎ)) → BewT(ÍψÎ)) 
D2. BewT(ÍϕÎ) → BewT(ÍBewT(ÍϕÎ)Î) 

 
D1 is true as long as we have Modus Ponens as a deduction rule. As for 

D2, it is true as long as Σ1 true sentences are provable in T. 
For the proof of the second incompleteness theorem we need that both 

D1 and D2 are provable in T. This is not immediate, since the complexity of 
D1 and D2 is greater than Σ1 (it is ∆2, i.e., both Σ2 and Π2). 

Up to this point, any recursive theory T that contains R0 suffices. But to 
prove D1 and D2 in T, R0 is not enough. What we need is the fragment of 
Peano’s Arithmetic (PA) known as Σ1-Induction (IΣ1). This is PA with the in-
duction schema restricted to Σ1 formulae. To show that IΣ1 proves D1 and D2 
above requires a considerable amount of work. 



Joan Bagaria 10

Let T be IΣ1 and consider the binary relation BT:  
 

x is a proof from T of y 
 
If T is recursive, then this is a relation defined by primitive recursion from 
recursive relations and functions. Using Gödel’s β function, which is primi-
tive recursive and allows to code finite sequences, one can show that every 
relation definable by primitive recursion from recursive relations and total re-
cursive functions is recursive, hence it has a definition by a Σ1 formula. Let 
BT(x,y) be the Σ1 formula that defines BT. 

It follows from the primitive recursive definition of BT that for all for-
mulae ϕ and ψ,  
 

BT(x,ÍϕÎ) ∧ BT(y,Íϕ → ψÎ) → BT(x∗y∗ÍψÎ,ÍψÎ) 
 
where x∗y∗ÍψÎ is the code of the proof obtained by concatenating the proof 
coded by x followed by the proof coded by y, and followed by ψ. 

We need to see that the formula above is provable in T. So, let M be a 
model of T. The formula above will hold in M provided the binary relation 
defined in M by the formula BT(x,y) satisfies the same definition by primitive 
recursion it satisfied in ℕ. This will be the case provided the β function, as 
defined in M, has the same properties it has in ℕ, namely, it codes finite se-
quences. The crucial point is to show that the β function has the property that 
for every a∈M and every sequence f of length a, there are c,z∈M such that 
f(i) = β(c,z,i), for all i < a. This is certainly not immediate, since a may be 
non-standard and so sequences of length a may be infinite. Fortunately, we 
need only to consider sequences f that are Σ1-definable in M, and so IΣ1 is 
enough. This is a delicate point, for we need to develop a bit of arithmetic 
within IΣ1: the least number principle for Σ1 formulae, the existence of the 
least common divisor of any two elements of M, the Chinese Remainder 
Theorem, etc. 

All this granted, then we can show that the property of BT(x,y) displayed 
above holds in M. Hence, we have: 

 
D1. T ⊢ BewT(ÍϕÎ) ∧ BewT(Íϕ → ψÎ)) → BewT(ÍψÎ) 

 
To prove D2 in T, first we can see that there is a (Σ1) formula, Tr1(x), 

such that for every Σ1 sentence ψ,  
 

(∗) T ⊢ (Tr1(ÍψÎ) ↔ ψ) 
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Tr1(x) is a truth definition for Σ1 sentences and, although long, it can be 
easily written by going trough the usual recursive definitions of denotation of 
terms and satisfaction of formulae. 

Moreover, T proves the completeness theorem for Σ1 sentences, namely, 
for every Σ1 sentence ψ, 
 

(∗∗) T ⊢ (Tr1(ÍψÎ) → BewT(ÍψÎ)). 
 

Indeed, applying Σ1-Induction to the Σ1 formula (in the variable ψ) 
 

ψ is a bounded sentence ∧ Tr0(ψ) → BewT (ψ), 
 
where Tr0(x) is a definition of truth for bounded sentences, we obtain 
 

∀ψ(ψ is a bounded sentence ∧ Tr0(ψ) → BewT(ψ)). 
 
Hence,  
 

∀ϕ(ϕ is a Σ1 sentence ∧ Tr1(ϕ) → BewT(ϕ)) 
 
for if M is a model of T and M ⊨ ϕ ≡ ∃xψ(x), ψ(x) is bounded and Tr1(ϕ), 
then M ⊨ ϕ and, therefore, M ⊨ ψ(a) for some a∈M. Extend the language by 
adding a new constant symbol a . Then, we have M ⊨ (ψ( ))TBew a , and so  
M ⊨ BewT(ϕ). 

Thus, (∗) and (∗∗) above yield  
 

D2. T ⊢ (BewT(ÍϕÎ) → BewT(ÍBewT(ÍϕÎ)Î)) 
 

Now all the elements are in place and we can prove Gödel’s second in-
completeness theorem. 
 

Proof: By D2,  
 

T ⊢ BewT(ÍθÎ) → BewT(ÍBewT(ÍθÎ)Î) 
 
By diagonalization, let θ be such that T ⊢ (¬BewT(ÍθÎ) → θ). By D0,  
T ⊢ BewT(ÍBewT(ÍθÎ) → ¬θÎ)). Hence, by D1, 
 

T ⊢ BewT(ÍθÎ) → BewT(Í¬θÎ) 
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By D0, T ⊢ BewT(Íθ → (¬θ → (θ∧¬θ))Î), from which it follows, by D1, 
 

T ⊢ BewT(ÍθÎ) → BewT(Íθ∧¬θÎ) 
 
By D0, T ⊢ BewT(Í(θ∧¬θ) → ⊥Î), where ⊥ is any false sentence, e.g., 0≠0. 
Hence, by D1,  

 
T⊢BewT(ÍθÎ) → BewT(Í⊥Î) 
 

Let CON(T) be the sentence ¬BewT(Í⊥Î). Thus, CON(T) says, via coding, that 
T is consistent. We have shown:  

 
T ⊢ CON(T) → θ. 
 

We conclude that T ⊬ CON(T), for if T ⊢ CON(T), then T ⊢ θ and 
therefore, by D0, T ⊢ BewT(ÍθÎ), that is, T ⊢ ¬θ, and so T is inconsistent. 

 
Thus, we have proved: 

 
THEOREM (Gödel’s second incompleteness theorem) Let T be a recur-

sive theory that contains IΣ1. If T is consistent, then T ⊬ CON(T). 
 
The theorem is also true for recursive theories T in any language, not 

necessarily containing the language of arithmetic. What is required is that IΣ1 
be interpretable in T. This means, roughly, that there are formulas in the lan-
guage of T that define, in T, a model of IΣ1. For then we may add to the lan-
guage of T the symbols of the language of arithmetic and we may add to T 
the defining formulas for these symbols, so that the new T in the extended 
language, call it T ′ , satisfies all the axioms of IΣ1. It follows that  
T ’  ⊬ CON(T ’ ). But since all the new symbols are definable in T, this implies 
that T ⊬ CON(T). 

 
An important example is Zermelo-Fraenkel Set Theory (ZF) and its ex-

tensions. In ZF we may define the model which has as its universe the finite 
ordinals, + and ⋅ are the usual sum and product of finite ordinals, S is the 
function that sends each finite ordinal α to α∪{α}, and 0 is the empty set. ZF 
proves that this is a model of PA. So, if T is a recursive theory that contains 
ZF, we have that T ⊬ CON(T). 
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III. SHORT PROOFS 
 

We will next present a short proof of Gödel’s second incompleteness 
theorem for Zermelo-Fraenkel set theory. The proof is due to T. Jech [Jech 
(1994)]. Notice that in this proof there is no need of arithmetizing the syntax. 

 
THEOREM If ZF is consistent, then ZF ⊬ CON(ZF). 
 
To prove the theorem, notice that ZF proves the completeness theorem 

for first-order logic, hence,  
 
ZF ⊢ (CON(ZF) → ZF has a model) 
 

 So, to prove the theorem, and towards a contradiction, suppose that ZF 
proves that ZF has a model. 

Let S be a finite set of axioms of ZF which is enough to define the no-
tions of model and satisfaction, contains a single instance of the Comprehen-
sion axiom that will be needed in II below, and proves that ZF has a model. 

If 〈M, EM〉 and 〈N, EN〉 are models of S, we define: M < N iff there is 
some 〈m, Em〉∈N, such that EM = (Em)N ≔ {〈x,y〉: N ⊨ xEmy}. i.e., M is what N 
thinks that m is. 

Notice that if M < N, then for every sentence σ of the language of Set 
Theory,  

 
M ⊨ σ iff N ⊨ (m ⊨ σ) 

 
Notice also that if M < N, then M ⊆ N. 
 
I. If N ⊨ S, then there is M < N. For suppose N ⊨ S. Then there is 

〈m,Em〉∈N such that N ⊨ (m ⊨ ZF). Let M = m and let EM = (Em)N. 
Then M < N. Notice that M ⊨ S. 

II. < is a transitive relation. For suppose m1 witnesses M1 < M2 and m2 
witnesses M2 < M3. Since , and M1 2

3
m mE ,E M∈

3M
3 satisfies some Com-

prehension, there is E ∈  such that 
 
M3 ⊨ ∀xy(xEy → ( 1mxE y ∧ 〈x,y〉 )) 2m mE E 1

 
It can be easily seen that 〈m1,E〉 witnesses that M1 < M3. 

If ϕ(x) is a formula with x as the only free variable, let Cϕ(x) be the set of 
natural numbers defined by ϕ(x). Let 
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D = {ϕ(x): ∃M(M ⊨ S ∧ M ⊨ ϕ(x)∉Cϕ(x)) } 
 

Let θ(x) be the formula ∃M(M ⊨ S ∧ M ⊨ x∉Cx). So, Cθ(x )= D. Then  
 
S ⊢ (θ(x)∈D iff ∃M(M ⊨ S∧M ⊨ θ(x)∉D)). 
 

The sentence “θ(x)∈D” plays the role of the sentence θ in the diago-
nalization theorem. So, let us call it also θ. 

 
III. If N ⊨ θ, then there is M < N such that M ⊨ ¬θ: If N ⊨ θ, then there 

is m∈N such that N ⊨ (m ⊨ ¬θ). Let M = m and let ( )M m NE E= . 
Then M < N and this is witnessed by M, and so M ⊨ ¬θ. 

IV. If N ⊨ ¬θ and M < N, then M ⊨ θ: For let m witness M < N. If 
M ⊨ ¬θ, then N ⊨ (m ⊨ ¬θ). Hence, N ⊨ θ. A contradiction. 
 

Now suppose M1 ⊨ S. If M1 ⊨ θ, by III there is M2 < M1 such that  
M2 ⊨ ¬θ. Otherwise, let M2 = M1. By I, let M3 < M2. By IV, M3 ⊨ θ. By III, 
let M4 < M3 be such that M4 ⊨ ¬θ. But by II, M4 < M2, which contradicts IV. 

 
 

III. SHORT PROOFS FOR WEAK THEORIES 
 

The argument above can also be used to prove Gödel’s second incom-
pleteness theorem for weaker theories, like PA, or even IΣ1. Let T be PA. 

Suppose T* is an extension of T such that:  
 

1. T* ⊢ “CON(T) → CON(T*)”. 
2. T* ⊢ “CON(T*) → T* has a model”.  
3. T* proves Comprehension for bounded formulas. 

 
Now suppose T ⊢ CON(T). Then, T* ⊢ CON(T*), and so T* ⊢ “T* has a 

model”. We can now proceed as in the proof above and reach a contradiction. 
Such a theory T* exists, for instance, the weak form of second-order 

arithmetic known as ACA0 (Arithmetical Comprehension Axiom. See [Hájek 
and Pudlák (1993)] or [Simpson (1993)]) construed as a first-order theory by the 
addition of new predicates Number and Set [Hájek and Pudlák (1993), 1.15]. 

If T is IΣ1, then there also exist theories T* satisfying (1)-(3) above. For 
instance, WKL0 (Weak König’s Lemma. See [Simpson (1993)]). 
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