COMPLETION OF (LF)-SPACES

J. M. García-Lafuente (†)

Departamento de Matemáticas, Universidad de Extremadura
06071-Badajoz, Spain

A.M.S. 1980 Subject Classification: 46A12, 46A05

Once the existence of metrizable (LF)-spaces was discovered by A. Grothendieck [1], the problem whether the completion of an (LF)-space is or is not an (LF)-space is answered in the negative, because no (LF)-space can be a Fréchet space. However, some (non-metrizable) (LF)-spaces are complete, e.g. the classical Köthe's strict (LF)-spaces. In this paper we will carry out a thorough study of the completeness of (LF)-spaces stressing upon the rather stable completion properties of (LB)-spaces. A basic tool for handling this problem is an Open Mapping Theorem for completions of (LF)-spaces, proved as well in the paper.

We recall that a Hausdorff locally convex space (E, τ) is an (LF)-space if there exists a strictly increasing sequence (E_n, τ _n) of Fréchet spaces, called defining sequence for E, such that E = \bigcup_{n} E_n, τ _{n+1}|_{E_n} $\leq \tau$ _n for every n ϵ N and τ is the finest Hausdorff locally

⁽⁺⁾ This research was supported by a Fulbright-MEC fellowship and the entire paper is to appear in Monatshefte für Mathematik.

convex topology on E such that $\tau \Big|_{E_n} \leq \tau_n$ for all $n \in \mathbb{N}$. We write $(E,\tau) = \lim_{n \to \infty} (E_n,\tau_n)$. If each space E_n is a Banach space, the (LF)-space E is called an (LB)-space. If $\tau_{n+1} \Big|_{E_n} = \tau_n$ for every $n \in \mathbb{N}$, the (LF)- or (LB)-space is said to be strict.

According to S. Saxon and P. P. Narayanaswami [4] , an (LF)-space E is said to be of type i or an (LF)_i-space (i = 1,2,3), if it satisfies the following condition (i):

- (1) E has a defining sequence $\{E_n\}$ such that no E_n is dense in E.
- (2) E is not metrizable and it has a defining sequence $\{E_n\}$ such that some E_n is dense in E_n
- (3) E is metrizable

For the subclass of (LB)-spaces we have instead, the following main result:

Theorem. a) The completion of an (LB)₁-space is an (LB)₁-space.
b) The completion of an (LB)₂-space is either an (LB)₂-space or a
Banach space.

This Theorem has nontrivial applications because non-complete (LB) $_1$ -and (LB) $_2$ -spaces do exist. Note, however that (LB)-spaces of type 3 do not exist by the Amemiya-Komura Theorem.

The proof of the main Theorem relies heavily on the following Open Mapping Theorem for completions of (LF)-spaces:

Theorem. Let Ψ be an (LF) topology on the completion $(\widetilde{E},\widetilde{\tau})$ of the (LF)-space (E,τ) , such that the identity map $I:(\widetilde{E},\Psi)\longrightarrow (\widetilde{E},\widetilde{\tau})$ is continuous. Then I is a topological isomorphism.

REFERENCES

- [1] Grothendieck, A., Sur les espaces F et DF. Summa Brasil. Math. $\underline{3}$ (1952-56), 57-121
- [2] Saxon, S., Narayanaswami, P. P., Metrizable generalized (LF)-spaces.

 Notices Amer. Math. Soc. 20 (1973), A-143
- [3] Saxon, S., Narayanaswami, P. P., (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology (preprint)
- [4] Saxon, S., Narayanaswami, P. P., Metrizable (LF)-spaces, (db)-spaces and the separable quotient problem. Bull. Austr. Math. Soc. 23 (1981), 65-80