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Let A be a commutative ring with 1 and let xl,...,xn be a sequence of
elements in A. We have the associated (homological) Koszul complex K(xl,..
..,xn), whose homology groups we will denote Hi(xl""’xn) or Hi(§)°

The aim of this note is to state some results around the following

question:

If the ideal I of A has generator sets xl,...,xn and yl,...,ym, how
are related H.(x) and H.(y)?. In other words: can we obtain invariants of
I through Koszul homology?. There is a known easy answer when A is a local
ring, because two minimal generator sets of I have the same cardinality
n=m and we pass from X toy by means of an invertible n x n matrix, obtai-

ning by functoriality isomorphic Koszul complexes and homology.

For general A and I=(x1,...,xn) the "extreme" cases i=0, n are clear,
since Ho(§)=A/I and Hn(§)=AnnA(I). Then the first interesting case is Hl(i)

with n22. To our knowledge, the only existent result is due to Simis:

Proposition 1 ([2]). Let A be a commutative ring, I=(x1,...,xn)=(y1,...,ym)

an ideal of A. Then there is an isomorphism of A/I-modules
m n
H (x) @ (A/I) " ~H (y) ® (A/T)

For the others Hi(§) we have proved

Proposition 2. Let A be a commutative ring, I=(x1,...,xn)=(y1,...,ym) an
ideal of A. For each i20 there is an isomorphism of A/I-modules
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The cancellation problem posed by the above result can be solved in so
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me cases. The most general we have reached is
Proposition 3. Let A be a commutative ring, I=(x1,...,xn)=(y1,...,yn) an
ideal of A such that A/I is semilocal noetherian. Then for every i
H, (x)»H, (y)
More particular results are in fact consequences of proposition 1.

Corollary 1 ([4]). Let A be commutative ring, I=(x1,...,xn)=(y1,...,yn) an
ideal of A such that H,(x)=0. Then H, (y)=0.

Corollary 2. Let A be a commutative ring, I=(x1,...,xn)=(yl,...,yn+l) an
ideal of A such that H1(5)=0. Then H1(1)=A/I.

Let Max A be the maximal spectrum of A. The strong cancellation theo-

rems from [1], [3] give us

Corollary 3. Let A be a commutative ring, I=(x1,...,xn)=(y1,...,yn) an ideal

of a. if n»>dim Max (A/I), then
Hy (x) =H, (y)

and the same is true if n3»dim(A/I) when A is a finitely generated k-algebra

over an algebraically closed field k.

simis ([2]) suggest the possibility that the freeness of the A/I modu-
le Hl(z) would be independent of the choice of generators for I. Our follo-

wing example shows that this is not so.

2+22-l) the coordinate ring of the real sphe

Example 1. Let B=R[X,Y,Z]/(X2+Y
re, A=B[T], I the ideal of A generated by T. Denote by x,y,z the images of

X,Y,Z in B. We have I=(T)=(xT,yT,zT), H (T)=0 and
Hy (XT,yT,2T) @ A/I =(A/T)°
but Hl(xT,yT,zT) is a rang 2 projective non free B-module.
This example is minimal in some sense. Corollary 3 excludes a similar
example over an algebraically closed field and corollary 2 one with only

two generators. On the other hand, Bass cancellation theorem [1] excludes

the use of more than three generators.

Example 1 answers in the negative the question of cancellation in pro-
position 1 with n=m, simply repeating twice T as a superflous generator.

The following one uses only minimal sets of generators for I.
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Example 2. With the same hotations as in example 1, we have I=(xT,yT,zT)=
(xT,yT, (y+x+1)T) and

Hl(xT,yT,zT)iih(xT,yT,(y+x+1)T3

We close this note cbaracterizing ideals which can be generated by

A-sequences through Koszul homology.

Proposition 4. Let A be a commutative noetherian ring, I=(x1,...,xn) an
ideal of A. I can be generated by some A-sequence if and only if Hl(xl,..
..,xn) is a stably free A/I-module with rang n-p(I) (with u(I)=least number

of generators of I).
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