AN INTERACTIVE SEQUENTIAL APPROACH TO MULTICRITERIA DECISION MAKING.

Sixto Ríos Dpto. de Estadística Universidad Complutense 28040 Madrid, Spain

and

Sixto Ríos-Insua Dpto. de Matemáticas Universidad de Extremadura 06071 Badajoz, Spain

AMS Classification: 90A05, 90A10.

The frame in which the multicriteria decision-making problems are stated as the search of a representation of the decision-maker (DM) preferences by means of a real-value function, has shown too much requirements in a great deal of real problems. A more slight idea, is to look for vector value functions, that is, to search for necessary and sufficient conditions such that for a given preference binary relation $(\mbox{\ensuremath{\checkmark}})$ defined on a set X, there is a function $f=(f_1,\ldots,f_k)$ with $f:X\longrightarrow \mathbb{R}^k$ such that for all $x,x'\in X$,

$$x < x'$$
 iff $f(x) < f(x')$ (1)

with the usual definition of $(\zeta)^{(*)}$ on \mathbb{R}^k .

A well-known result given by Milgram, Birkhoff,..., has been generalized (Roberts |1979|) as follows: If X is finite and (\langle) a strict partial order of dimension at most k,k>l, the re are k functions f_1,\ldots,f_k satisfying

$$x < x'$$
 iff $f_i(x) < f_i(x')(\forall i)$ (2)

If it is overlooked that X be finite, a representation theorem given by Ríos-Insua |1980| shows the existence of a function verifying (1).

Theorem. Let be $x \in X$ where X is a rectangular subset of \mathbb{R}^n and let (\prec) be a preference binary relation on X. Assume

- a) (X, \prec) is a strict partial order intersection of k strict weak orders (X, \prec) .
- b) x<x' imply x<x'.

 $^(*) f(x) \langle f(x') \leftarrow \Rightarrow f_{i}(x) \langle f_{i}(x') (\forall i)$

c) If x $\leq x'$ and x' $\leq x''$ there are $a_{j} \in [0,1]$ such that

$$a_jx+(1-a_j)x$$
" $j \sim x'$ for all $j=1,...,k$.

Then there is a continuous vector value function $f:X\longrightarrow \mathbb{R}^k$ satisfying (1). This theorem has been afterwards considered in Skulimowski |1985| and Ríos and Ríos-Insua |1986|. The latter considers a "nest theorem" as follows:

Theorem. Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^k$ be a strictly increasing function. If $x' \in X \subset \mathbb{R}^n$ is such that $f(x') \in M(Z)$, where $Z = f(X) \subset \mathbb{R}^k$, then $x \notin M(X)$ and $M(X) \supset \xi(X, f)$.

The set M(X) will be the maximal set of X for the correspondig strict partial order (ζ) on \mathbb{R}^n (analogously M(Z)), and $\xi(X,f)$ the efficient set of X for f, which we call, set of value efficient decisions (of first order).

These two theorems lead us to consider, in the successive steps of a finite hierarchical configuration of criteria, a reduction of the efficient set of decisions x, which may be chosen by the DM, having then a convergent process, that is, the value efficient decisions set of a given order shall contain the one of upper order and so on.

The efficient set of \mathcal{R}_{X} for u, will be designate by $\mathcal{E}(\mathcal{R}_{Y}, u)$ and called utility efficient set (of first order). Note that this definition is a generalization of the one under certainty, and so it has also sense to consider the efficient set $\mathcal{E}(X,u)$ subset of X.

On other hand, if we call

$$\mathbf{U} \! = \! \left\{ \! \mathbf{u} \, \boldsymbol{\epsilon} \, \, \mathbf{\mathbb{R}}^{\mathbf{k}} : \! \mathbf{u} \! = \! \mathbf{E} \, \, \mathbf{u} \left(\boldsymbol{P}_{\mathbf{X}} \right), \boldsymbol{P}_{\mathbf{X}} \! \boldsymbol{\epsilon} \! \boldsymbol{\mathcal{P}}_{\! \boldsymbol{X}} \! \right\} \! . \label{eq:u_def}$$

^(*)We note that we could consider a more extensive class of $\operatorname{dis}_{\underline{}}$ tributions.

 $^{(**) \}times (x' \leftarrow =)x_{1} (x_{1}' (\forall i) \text{ and } x_{j} < x_{j}' \text{ for at least one j.}$

the above definition is equivalent to write

$$E u(P_x) \in M(U)$$

Now, we can state that the efficient elements of \mathcal{P}_X , are distributions over points of $\xi(X,u)$.

Theorem. Let be $X \subset \mathbb{R}^n$, \mathcal{L}_X and let $u: X \longrightarrow \mathbb{R}^k$ be a strictly increasing vector utility function. If $P_X \in \mathcal{L}_X$ is efficient for u, then the rewards of P_X are points of $\mathcal{E}(X,u)$.

The converse of this theorem is not true, and we can write that

$$\mathcal{P}_{\xi(X,u)} \supset \xi(\mathcal{Z}_X,u)$$

Hence, the set of decisions of interest for the DM, given u, shall be $\xi(\mathcal{R}_X,u)$, that will be called utility efficient set (of first order).

The above theorems together with its extension to the case under uncertainty (Ríos and Ríos-Insua, |1986|) permit an interactive approach to the multicriteria decision-making problem.

REFERENCES

- RIOS, S. and RIOS-INSUA, S., 1986. "Vector value Function and Vector Distance Methods in Multicriteria optimization". First Int. Conf. on Vector optimization, Technical University of Darmstadt.
- RIOS INSUA, S., |1980|. "Decisiones Multicriterio con Ordenaciones Parciales". Ph. D.Thesis, Editorial Universidad Complutense, Madrid.
- ROBERTS, F.S., |1979|. "Measurement theory". Addison-Wesley.
- SKULIMOWSKI, A.M.J., |1985|. "Solving Vector optimization Problems Via Multilevel Analysis of Foreseen Consequences". Foundations of Control Engineering, 10, Vol.1, Warsaw.