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In this work, we get new results relative to the conjugacy classes
of a finite group G.

Let N a normal subgroup of G, m a set of prime numbers, r(G) (resp.
r™G)) the number of conjugacy classes of elements (resp. m—elements) of
G, mG) the set of all different primes dividing |G/, G, the set of all
n-elements of G, and G = G/N ..In this paper, we analize the number r"(G)
through the local analysis of the number rg(gN) of conjugacy classes of
m-elements of G which intersect the coset gN . Our aims are threefold:
to obtain upper and lower bounds of the number r"(G) in terms of the num-
bers r"(G/N), r"(N) and |G'|, where G' denotes the derived subgroup of G;
to get the residue class of r"(G), modulo the "best" number, given in
terms of the primes dividing |G|; and finally, to analyze the conjugacy-
vector A, = (lCG(g1)|""’|CG(gr)I) of G, supposed that G is disjoint
union of the conjugacy classes ClG(gi) i=1,...,r=r(G) and being
lCG(gl)lz v 3|CG(gr)| . The results obtained are useful both for the
calculation of the conjugacy-vector of a finite group and for the classi-
fication of finite groups according to the number of conjugacy classes
(see examples 11-13, into paragraph 4).

We have collected here some of the main inequalities and congruences

which are proved. They are, among other results, the following:

1) r™G) < r"(6/N).r"(N), - (1)
and equality holds if and only if CG/N(gN) = CG(g)N/N for each m-element
g of G.

II) If j is an integer number coprime to o(g), then the following
equalities hold: L oM J G _ G
rG(gN) = rG(g N) and nAgN = wAgJN ,
G . . - . T
where wAgN is defined similarly to AG' for , ClG(gi) 1=1,...,r=rG(gN),

the conjugacy classes of m-elements of G which intersect the coset gN .

L ” -\ .
I11) rG(gN) < rNG(gN)(N)' supposed that Ca(g) is a n-group. In addi-

tion, equality holds iff g (z) .

e N C
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IV) Let G a L"—group and H a Hall m-subgroup of G. Then, the follo-
wing is true:

a) r'(G) 2 (r"(G/N)-1).(|NNH|/|[H,G] NN|) + rg(N) . (2)
In particular, putting 7= 7(G) into (2), we get

r(G) 2 (r(G/N)-1).|NG'/G'| + ry(N),
inequality that includes as a special case the one given by E.A. Bertram
(cf. [1] Th. 3; or [2] Lemma (2.1)).

b) If HN/N is abelian, then r"(G) < r“(G/N).rH(HnN), (3)
where rH(H NN) denotes the number of conjugacy H-classes that compose the
normal subgroup HNAN of H .

c) If NN[H,G] =1, being [H,G] ={ [h,g] | heH, geG} , then

r"(G) = r"(G/N).[HNN]|, (4)
(putting m= m(G), (4) yields Rusin's result given in [11] prop.3).

Inequalities (1) and (3) generalize Gallagher's inequality:
r(G) ¢ r(G/N).r(N), (cf.[B])
which follows from them as a special case for 7= 7(G).
Moreover, if G/N is an abelian w-group, then III) yields:
r™(G) < |G/N -rg(N).
In general, we obtain r(G) < (r(G)-|Z(G)|).r(N) + |Z(G)

.rG(N) .

V) The following congruences are obtained:
a) If S; denotes the number of conjugacy N-classes of m-elements
of N fixed by the automorphism fg: N —— N defined by fg(x) = x8

for each xeN, then p

sg = rE(gN) (mod. d ) .

INg(gN)/ (N<g>) |
(For each positive integer number t, we define dt = g.c.d.(p-1| p is a
prime dividing t)).

b) rg(N) r"(N) (mod. dIG

'dlﬁl)'

c) r™(e) = |Gn| (mod. (le )/g.c.d.(]|G],d

, g1, lel, )
d) r™(G) = |G| (mod. SI"GI)’ where 61|TG| is defined by &)
2 2
(ql_l"'"qe_l’qe+l—1""’qs_1)’ supposed that m(G) = {ql,...,qs} and

T(G)Nm = {ql,...,qe}.

i = g.c.d.

™ -
e) r'(G) = r"(G/N).r"(N) (mod. l.c.m.(GTG’,lel.dla])).

Congruences of the type b) or c) for m= w(G), were obtained in a diffe-
rent way by Poland (cf.[10] prop. (3.9)) and Mann (cf.[8] (16)). Con-
gruence d) generalizes Hirsch's congruence given in [7] for m = n(G) .
Finally, congruence a) relates the number rg(gN) with the number sg;

L

naturally, the number Sg is of easier calculation than rg(gN).
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