SEMISIMPLE REPRESENTATIONS OF QUIVERS research announcement

Lieven LE BRUYN University of Antwerp, UIA-NFWO

A quiver Q consists of a finite set $Q_0 = \{1, ..., n\}$ of vertices, a set Q_1 of arrows and two maps $t, h : Q_1 \to Q_0$ assigning to an arrow ϕ its tail $t\phi$ and its head $h\phi$, respectively. We do not exclude loops nor multiple arrows.

A representation V of Q is a family $\{V(i): i \in Q_0\}$ of finite dimensional C-vectorspaces together with a famnily of linear maps $\{V(\phi): V(t\phi) \to V(h\phi) \mid \phi \in Q_1\}$. The vector dim(V) = (dim(V(1)), ..., dim(V(n))) is called the dimension type of V. A morphism $f: V \to W$ between two representations of Q is a family of linear maps $\{f_i: V(i) \to W(i) \mid i \in Q_0\}$ such that $W(\phi) \circ f(t\phi) = f(h\phi) \circ V(\phi)$ for all $\phi \in Q_1$.

The representation space $R(Q,\alpha)$ of Q of dimension type $\alpha=(\alpha(1),...,\alpha(n))\in\mathbb{N}^n$ is the set of representations

$$R(Q,\alpha) = \{V : V(i) = \mathbb{C}^{\alpha(i)}; 1 \le i \le n\}$$

Because $V \in R(Q, \alpha)$ is determined by the maps $V(\phi)$

$$R(Q, \alpha) = \bigoplus_{\phi \in Q_1} M_{\phi}(\mathbb{C})$$

where $M_{\phi}(\mathcal{C})$ is the set of $\alpha(h\phi)$ by $\alpha(t\phi)$ matrices over \mathcal{C} . We consider $R(Q,\alpha)$ as an affine variety with coordinate ring $\mathcal{C}[Q,\alpha]$. The linear reductive group $GL(\alpha) = \prod_{i=1}^n GL_{\alpha(i)}(\mathcal{C})$ acts linearly (and regularly) on $R(Q,\alpha)$ by for $g = (g_1,...,g_n) \in GL(\alpha)$. The $GL(\alpha)$ -orbits in $W(\phi) \circ f(t\phi) = f(h\phi) \circ V(\phi)$ for all $R(Q,\alpha)$ are the isomorphism classes of representations.

We want to study the quotient variety

$$Z(Q, \alpha) = R(Q, \alpha)/GL(\alpha)$$

i.e. the affine variety parametrizing the closed $GL(\alpha)$ -orbits or equivalently the isoclasses of semi-simple representations of dimension type α . In view of Mumford's theory [Mu], the coordinate ring of $Z(Q,\alpha)$ coincides with the ring of polynomial invariants $\mathcal{C}[Q,\alpha]^{GL(\alpha)}$. Note that $\mathcal{C}[Q,\alpha] = \mathcal{C}[X_{\phi}:\phi\in Q_1]$ where X_{ϕ} is an $\alpha(h\phi)$ by $\alpha(t\phi)$ matrix of indeterminates $(x_{ij}(\phi))_{i,j}$. We can give a precise description of this invariant ring:

Theorem 1 (Le Bruyn, Procesi)

The ring of polynomial invariants is generated by elements of the form $Tr(X_{\phi_1}.X_{\phi_2}...X_{\phi_k})$ where $(\phi_1,\phi_2,...,\phi_k)$ is an oriented cycle in Q and $k \leq \sum_{i=1}^n \alpha(i)$.

The main point of the proof is to note that $Z(Q, \alpha)$ is an irreducible component of the variety parametrizing semi-simple $\sum \alpha(i)$ - representations of the path algebra of the opposite quiver Q^* which reduces the problem modulo [AS] to [Pr].

If $\xi \in Z(Q,\alpha)$, then ξ determines the isoclass of a semi-simple representation $V=e_1.V_1\oplus ...\oplus e_k.V_k$ where the V_i are distinct simple representations with dimension vectors β_i and occurring with multiplicity e_i . We say that ξ is of type $\tau=(e_1,\beta_1;...;e_k,\beta_k)$. In order to describe all possible types we need to know the dimension types of simple representations of Q. For all $i,j\in Q_0$ let us denote $r_{ij}=\sharp\{\phi\in Q_1:t\phi=i,h\phi=j\}$. The Ringel bilinear form of Q, R, on \mathbb{Z}^n is then determined by the n by n matrix $(\delta_{ij}-r_{ij})_{i,j}$. Let $\alpha_i=(\delta_{ij})_j$ be the standard basevectors for \mathbb{Z}^n , then we get

Theorem 2 (Le Bruyn,Ringel) $\alpha \in \mathbb{N}^n$ is the dimension type of a simple representation of the quiver Q iff

either $supp(\alpha)$ is an oriented cycle and all $\alpha(i)$ are 0 or 1 or $supp(\alpha)$ is a 'club' i.e. any two vertices in it belong to an oriented cycle in $supp(\alpha)$ and $R(\alpha, \alpha_i) \leq 0$, $R(\alpha_i, \alpha) \leq 0$ for all $i \in supp(\alpha)$.

The proof goes by induction on $\sum \alpha(i)$ and a shrinking process stating that for a quiver Q having verices i and j such that there is only one directed arrow between them, the dimension types of simple representations of Q with $\alpha(i) = \alpha(j)$ are those of the simples of Q' where we have identified i with j.

Let $\tau = (e_1, \beta_1; ...; e_k, \beta_k)$ be the type of a semi-simple α -representation of Q, then we denote by $Z(\tau)$ the set of all points $\xi \in Z(Q, \alpha)$ of type τ . The next result is an easy application of the Luna slice lemma [Lu].

Theorem 3

 $\{Z(\tau) \mid \tau$ an admissible type $\}$ is a finite stratification of $Z(Q, \alpha)$ into locally closed irreducible smooth subvarieties.

Of course, $Z(\tau')$ lies in the closure of $Z(\tau)$ if representations of type τ' are degenerations of those of type τ . Now, let $\xi \in Z(Q,\alpha)$ be a point of type $\tau = (e_1,\beta_1;...;e_k,\beta_k)$, then we construct a new quiver Q_{tau} in the following way: $Q_{\tau 0} = \{1,...,k\}$, in i there are $1 - R(\beta_i,\beta_i)$ loops and there are $-R(\beta_i,\beta_j)$ oriented arrows from i to j if $i \neq j$, onsider the dimension type $\alpha_{\tau} = (e_1,...,e_k)$, then we get

Theorem 4

There is an analytic isomorphism between a neighborhood of ξ in $Z(Q, \alpha)$ and a neighborhood of the origin in $Z(Q_{\tau}, \alpha_{\tau})$.

Again, this follows from the Luna slice theorem, see [LP] for some special cases. It follows from 4 that there is a generic type $\tau_{gen}=(e_1,\gamma_1;...;e_k,\gamma_k)$ i.e. such that $Z(\tau_{gen})$ is an open subvariety. By counting the loops in the quiver associated to this τ_{gen} one can show that the Krull dimension of the quotient variety $Z(Q,\alpha)$ is equal to $\sum_{i=1}^k (1-R(\gamma_i,\gamma_i))$. Moreover, $Z(\tau_{gen})$ is precisely the open set of regularity of $Z(\tau)$ except for low-dimensional anomalities.

References

[AS]: M.Artin, W.Schelter; Integral ringmorphisms; Adv in Math 39 (1981) 289-329

[Lu]: D.Luna; Slices étales; Bull Soc Math France Mém 33 (1973) 81-105

[Mu]: D.Mumford; Geometric invariant theory; Springer (1965)

[Pr]: C.Procesi; Invariant theory of n by n matrices; Adv in Math 19 (1976) 306-381