"ON THE NUMBER OF CONJUGACY CLASSES OF *-ELEMENTS IN A FINITE GROUP"(*)

Antonio Vera López and Mª Concepción Larrea

Departamento de Matemáticas. Facultad de Ciencias. Universidad del

País Vasco. Apartado 644. Bilbao. SPAIN.

In this work, the number of conjugacy classes of π -elements (resp. non π -elements) of G is analyzed in terms of the corresponding numbers of G/N and for each N normal subgroup of G.

In the following, G will denote a finite group, N a normal subgroup of G, \overline{G} =G/N, π a set of prime numbers and g_{π} the π -part of the element gcG. For each non-empty subset S of G, we define $[S]_{\pi} = \{s \in S \mid s \text{ is a } \pi\text{-element}\}$ and $[S]_{\pi}' = S - [S]_{\pi}$. Moreover, $r_G^{\pi}(S)$ (resp. $r_G^{\pi}(S)$) denotes the number of conjugacy classe of π -elements (resp. non π -elements) of G that intersect S. Further, we write $r^{\pi}(G) = r_G^{\pi}(G)$, $r^{\pi}(G) = r_G^{\pi}(G)$, $r^{\pi}(G) = r_G^{\pi}(G)$, $r^{\pi}(G) = r_G^{\pi}(G)$, and $r_G(S) = r_G^{\pi}(G)$, where π denotes the set of all prime numbers dividing |G|.

In this work, for each normal subgroup N of G and each π -element \bar{g} of G/N, the following inequalities are proved:

i)
$$r_G^{\pi}(gN) \leq r_{N_G(gN)}^{\pi}(N)$$
. (1)

ii)
$$\mathbf{r}_{G}^{,\pi}(gN) \leq \mathbf{r}_{N_{G}}^{,\pi}(gN)$$
 (N). (2)

Furthermore, the equality holds in (1), (resp. in (2)) if and only if \overline{g} is an element of $A_{g,N}^{\pi}$ (resp. $B_{g,N}^{\pi}$), where $A_{g,N}^{\pi}$ and $B_{g,N}^{\pi}$ are defined by $A_{g,N}^{\pi} = \bigcap \{\overline{C_G(x_{\pi}n)} \mid x_{\epsilon}N_G(gN), n_{\epsilon}N, x_{\pi}n \text{ is a π-element and $\overline{x}_{\pi}, \epsilon}\overline{C_G(x_{\pi}n)}\} \text{ and } B_{g,N}^{\pi} = \bigcap \{\overline{C_G(x_{\pi}n)} \mid x_{\epsilon}N_G(gN), n_{\epsilon}N, x_{\pi}n \text{ is a non π-element and $x_{\pi}, \epsilon}\overline{C_G(x_{\pi}n)}\}$ (here, π' denotes the complementary of π).

iii) For each normal subgroup N of G we have:

$$r^{\pi}(G) \leq (r^{\pi}(G/N) - |[Z(G/N)]_{\pi}|) \cdot r^{\pi}(N) + |[Z(G/N)]_{\pi}| \cdot r^{\pi}_{G}(N),$$
 (3)

the inequality (3) is proved by using the local inequality (1) for each element g of G. Furthermore, the equality holds in (3), if and only if the following conditions are satisfied:

(*) This work has been supported by the University of the Basque Country

a) $\bar{g} \in A_{g,N}^{\pi}$ for each $\bar{g} \in [\bar{G}]_{\pi}$.

b)
$$C_{\overline{G}}(\overline{g}) \leq \bigcap_{n \in [N]} \overline{C_{G}(n)}$$
 for each $\overline{g} \in [\overline{G}]_{\pi} - Z(\overline{G})$.

In particular, if G/N has a central Hall π -subgroup HN/N, then (3) yields

$$\mathbf{r}^{\pi}(\mathbf{G}) \leq \left| \left[\mathbf{\tilde{G}} \right]_{\pi} \right| \cdot \mathbf{r}_{\mathbf{G}}^{\pi}(\mathbf{N}) = \left| \mathbf{\tilde{H}} \right| \cdot \mathbf{r}_{\mathbf{G}}^{\pi}(\mathbf{N}). \tag{4}$$

Moreover, the equality holds in (4) if and only if $\overline{\mathbf{H}}$ is contained in

On the other hand, by using the local inequalities (1) and (2), the following inequality is proved.

iv) For each normal subgroup N of G, we have:

$$\mathbf{r'}^{\pi}(G) \leq (\mathbf{r'}^{\pi}(G/N) - |[Z(\overline{G})]_{\downarrow}) \cdot \mathbf{r'}^{\pi}(N) + |[Z(\overline{G})]_{\pi}| \cdot \mathbf{r'}^{\pi}_{G}(N) + \mathbf{r'}^{\pi}(G/N) \cdot \mathbf{r}(N),$$
 (5)

having equality if and only if the following assertions are true:

- c) $C_{\overline{G}}(\overline{g}) = \overline{C_{G}(gm)}$ and $Cl_{N}(m)^{g} = Cl_{N}(m)$ for any $\overline{g} \in [\overline{G}]_{\pi}$ and $m \in N$.
- d) $\bar{g} \in B_{g,N}^{\pi}$ for each $\bar{g} \in [\bar{G}]_{\pi}$
- e) $C_{\overline{G}}(\overline{g}) \leq \bigcap_{n \in [N]^{\perp}} \overline{C_{G}(n)}$ for each $\overline{g} \in [\overline{G}]_{\pi} Z(\overline{G})$.

In particular, from (3) and (5) we get the following inequalities:

$$\mathbf{r}^{\pi}(G) \leq \mathbf{r}^{\pi}(G/N) \cdot \mathbf{r}^{\pi}(N) - (\mathbf{r}^{\pi}(N) - \mathbf{r}^{\pi}_{G}(N))$$
 (6)

and

$$r(G)-r^{\pi}(G) \leq r(G/N)r(N) - r^{\pi}(G/N)r^{\pi}(N) - (r^{\pi}(N)-r^{\pi}(N))$$
 (7)

v) For each normal subgroup N of G, the following inequalities are true:

$$\mathbf{r}^{\pi}(\mathbf{G}) \leq \left| \left[\overline{\mathbf{G}} \right]_{\pi} \right| \cdot \mathbf{r}_{\mathbf{G}}^{\pi}(\mathbf{N}) \tag{8}$$

$$\mathbf{r'}^{\pi}(G) \leq |[\bar{G}]_{\pi}|\mathbf{r'}^{\pi}(N) + (|\bar{G}| - |[\bar{G}]_{\pi}|)\mathbf{r}_{G}(N)$$
 (9)

having equality in (8) (resp. in (9)) if and only if $\overline{g} \in A_{g,N}^{\pi}$ and $C_{N_{\overline{G}}(gN)}(n) = C_{\overline{G}}(n)$ for any $\overline{g} \in [\overline{G}]_{\pi}$ and $n \in [N]_{\pi}$ (resp. $\overline{g} \in B_{g,N}^{\pi}$ and $C_{N_{\overline{G}}(gN)}(n) = C_{\overline{G}}(n)$ for any $\overline{g} \in [\overline{G}]_{\pi}$ and $n \in [N]_{\pi}$, and $\overline{g} \in B_{g,N}^{\pi(G)}$ and $C_{N_{\overline{G}}(gN)}(n) = C_{\overline{G}}(n)$ for any $\overline{g} \in \overline{G} - [\overline{G}]_{\pi}$ and $n \in [N]$.

Finally we obtain the following inequality

vi)
$$\mathbf{r}^{\pi}(\mathbf{G}) \leq |[\vec{\mathbf{G}}]_{\pi}|\mathbf{r}_{\mathbf{G}}^{\pi}(\mathbf{N}) + (\mathbf{r}_{\mathbf{G}}^{\pi}(\mathbf{N}) - (|[\vec{\mathbf{G}}]_{\pi}|\mathbf{r}^{\pi}(\mathbf{N}))/|\vec{\mathbf{G}}|) + (\mathbf{r}^{\pi}(\vec{\mathbf{G}}) - 1 - (|[\vec{\mathbf{G}}]_{\pi}'\mathbf{G}) - \pi|(|[\vec{\mathbf{G}}]_{\pi}|-1))/|\vec{\mathbf{G}}|).$$
 (10)

In addition, the equality holds if and only if the following conditions are sa-

tisfied 1) G/N is π -group 2) For each $\bar{y} \in \bar{G}$ and each $x \in G-N$ such that $[\bar{x}, \bar{y}] = \bar{I}$, \bar{y} is an element of $\bigcap_{n \in N} \overline{C_G(xn)}$ and 3) $C_G(xn) \cap [N]_{\pi} = 1$ for any $n \in N$ and each element $\bar{x} \in \bigcup_{\bar{g} \in [\bar{G}]} (\bar{G} - C_{\bar{G}}(\bar{g}))$.

In particular, putting $\pi = \pi(G)$, (10) yields

$$r(G) \le |G/N|_{r_G}(N) - (r(N)-r_G(N)) - (|G/N|-r(G/N)),$$

and when G/N is an abelian group, we have

$$r(G) \leq |G/N|r_{G}(N) - (r(N)-r_{G}(N)),$$

and the equality holds if and only if $G = C_{\widehat{G}}(g)N$ for each $g \in G-N$.

REFERENCES

- [1] P.X. Gallagher "The number of conjugacy classes in a finite group" Math. Z.

 118 (1970), 175-179.
- [2] C.H. Sah "Automorphisms of finite groups" J. Algebra 10 (1968), 47-68.
- [3] A. Vera-López and L. Ortíz de Elguea "On the number of conjugacy classes in a finite group" To appear in Journal of Algebra.

(AMS Class : 20D)

(To appear in Proceedings of the Royal Society of Edinburgh)