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Let @ be acommutative associative ring with 1. A unitary ®-module with a
trilinear map (a,b,c) 2 <abc> of Ax A xA into A iscalled a ternary
algebra (of Hestenes [2]) if the identities
<<abc>de>=<a<dcb>e>=<ab<cde>>
are satisfied for all a,b,c,d,e € A. Itis easy to verify that the complex vector space
M «m(C) of all rectangular matrices is a complex ternary algebra for the triple product
definedby <abc>=a(b*)\c
where (b*)! is the conjugate transpose of the matrix b. A submodule I of A is
called an inner ideal (rightideal respectively)if <xAx>cl, xel (<kIAA>cI
resp.). Anideal is asubmodule B of A such that
<BAA>+<AAB>+<ABA>cIl Atemaryalgebra A is said to be simple if
<AAA>#0 and A containsnoideals B=#0,A. Simple finite dimensional ternary
algebras over a field were classified by Loos in [3], who also determined [4] the
structure of simple ternary algebras satisfying dcc on inner ideals. A ternary algebra A
is called semiprime (prime resp.)if <BAB>=0 implies B=0, B idealof A
(<BAC>=0 implies B=0 or C=0, B and C idealsof A respectively).
The socle Soc(A) of a semiprime ternary algebra A is defined to be the sum of all
minimal right ideals of A. The socle is an ideal of A that is a direct sum of simple
ideals. Moreover, Soc(A) coincides with the sum of all minimal inner ideals (this last
characterization is the notion of socle given by McCrimmon [5] for a non-degenerate
Jordan system). Foranideal B of a semiprime temnary algebra A the annihilator of
B is the largest ideal Ann(B) satisfying <Ann(B) AB>=0. Anideal B is
called essential if Ann(B) =0. We have proved ([1]) the following:
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THEOREM 1. A semiprime ternary algebra A  has socle essential if and only if A

is a subdirect sum of prime ternary algebras A, with nonzero socle such that A

" contains @ Soc(A)).

THEOREM 2. The prime ternary algebras A with nonzero socle are these described
below : ’

1) Let D beadivision associative algebra and suppose that P =(X,,X,,g) and

Q =(Y,,Y,,h) are two pairs of dual vector spaces over D. A pair T =(T,,T,)
where T, € homp(X;,Y;) and T, e homp(X,,Y,) is said to be continuous if there
exist Tl# € homp(Y,,X,) and Tz#e homp(Y,X;) (necessarily unique) such that
h(x,Ty.y,) = g, Tyfy,)  and h(y;,Tox,) = g(yTo*x,)

forall x, € X|, xo€ X,, yj€ Y; and y,€ Y, Write L(P,Q) todenote the set
of all continuous (T, T,). Then L(P,Q) for the triple product defined by
<RRY) (81,8y) (T}, Ty > =(R;S,* T, , T,8,#Ry)

is a ternary algebra. Moreover, if F(P,Q) denote the set of all (T}, T,) € L(P,Q)
such that both T; and T, have finite rank then every ternary subalgebra A of
L(®P.Q) containing FP.Q) isaprime ternary algebra with socle F(P,Q).

2) Let D bea division associative algebra with involution and suppose that (X.,g)
and (Y,h) are two left vector spaces with nondegenerate inner products over D (both
either hermitian or alternate). Wé recall that in the alternate case D is a field and its
involution is the identity. An operator T € homp(X,Y) is said to be continuous if
thereis T# e homp(Y,X) (necessarily unique) such that

h(xT.y) = g(x,yT%)

forall xe X, ye Y. Wedenote by L(X,Y) the set of all continuous linear
operators of (X,g) into (Y,h). Itis not difficult to see that the triple product given by
<TSR>=TS¥R

forall T,S,R € L(X,Y) defines a structure of ternary algebra on L(X,Y). Let
F(X,Y) denote the set of all finite rank continuous linear operators of (X,g) into
(Y,h). Then every ternary subaigebra A of L(X,Y) containing F(X.Y) is prime
with socle F(X,Y).
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‘ We note that ternary algebras A of type (2) are strongly prime in the sense that
<aAb>=0 implies a=0 or b=0 while ternary algebras of type (1) do not enjoy
this property. Moreover, in type (2) we can still distinguish berween two classes:
Ternary algebras A associated with hermitian spaces contain minimal inner ideals [
such that <III>=20 while thosg associated with alternate products do not contain
such an ideal I -

Since every semiprime ternary algebra A satisfying dcc on right ideals has socle
essential, Theorems 1 and 2 can be applied to determine the structure of such ternary
algebras, so obtaining in particular the theorem of Loos for simple ternary algebras

satisfying dcc on inner ideals, already cited.
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