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All rings considered in this note will be commutative and noetherian.
A* will denote the completion of the local ring A.

M. André fi, supplément, cor.3ll has established the following result:
a local ring A is quasi-excellent if and only if HI(A,A ,—) = 0.

Here Hn(A,B,—J denotes the n-th André-Quillen homology functor of the
A-algebra B.

The aim of this note is to state an analogous result in "dimension 2",
that is to say:
Theorem P. Let A be a local ring whose formal fibers are complete inter-
sections (c.i.). Then
1) for every p € Spec(A), the formal fibers of Ap are c.i.
2) whenever B is a finitely generated A-algebra, the set

c1(B) := { p€ Spec(B)/Bp is c.i.}

is open in Spec(B).

Observe that properties 1) and 2) are obtained by changing the word
“regular" to "c.i." throughout the definition of quasi-excellent ring.
On the other hand, the formal fibers of A are c.i. if and only if the
natural homomorphism A —> A is c.i. and this is equivalent to the
vanishing of H2(A,A*,—0.

We recall that a local ring A is c.i. if A¥* is isomorphic to R/J, where
R is a reqgular local ring and J is generated by a regular sequence. A

noetherian ring A is c.i. if Ap is a local c.i. for each p € Spec(A).
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In the proofs we use two results of L.L. Avramov |3]:
— If A is a local c.i., then AD is c.i. for each p € Spec(Aa).
— If ¢:A —> B is a flat local homomorphism and K the residue field of
A, then B is c.i. if and only if A and BEAK are c.i.

We start with some results about c.i. homomorphisms.

A homomorphism ¢:A —> B is said to be c.i. |5| if it is flat and if,
for each q € Spec(B), with p; = ¢'1(q) € spec(d) and K(p) = Ap/pApf the
ring B&AK(P) is c.i.

Proposition 1. Let A be a local c.i. ring. Then the natural homomorphism
A —> a* is c.i.

Theorem 1. Let ¢:A —> B be a flat homomorphism. The following proper-
ties are equivalent:

1) ¢ is c.i.

0

2) HZ (AIBI—)

3) HB(A,B,—O =0

L}

4) Hn(A,B,—O 0 for n sufficiently large.

The equivalence between 2) and 3) follows from a result of Gulliksen
Il, th. 17.13], and thé equivalence between 2) and 4) is a consequence
of a theorem of Avramov |3, th. 1}.

Using this characterization and the properties of the André-Quillen
homology 11], we prove the following two propositions.

Proggsitiqn 2. Let ¢:A —> B and y:B —> C be two homomorphisms.

1) If ¢ and ¢ are c.i., then P¢ is c.i.

2) If ¢ is c.i. and Y is faithfully flat, then ¢ is c.i.

3) If ¢ and ¢ are flat and y¢ is c.i., then ¢ is c.i.

Proposition 3. Let ¢:A —> B be a c.i. homomorphism and C a finitely
generated A-algebra. Then the induced homomorphism §:C —> B&®.C is c.i.

A

We can now obtain the results of which theorem P is a corollary.
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Theorem 4. Let ¢:A

> B be a faithfully flat c.i. homomorphism. If
CI(B) is open in Spec(B), then CI(A) is open in Spec(A).

Theorem 6. Let A be a ring such that the formal fibers of Am are c.i.
for each maximal ideal m of A. Then the formal fibers of Ap are c.i. for
each p € Spec(a).

Proof of theorem P. 1) It is a consequence of theorem 5.

2) Since the natural homomorphism ¢:A —> A* is c.i., proposition 3
shows that the induced homomorphism y:B ——> A*EAB is c.i. Moreover y is
faithfully flat. By Cohen's theorem |1, th. 16.30[, A* is homomorphic
image of a regular local ring, and so the finitely generated A*-algebra
A*DAB is a homomorphic image of a regular ring. Hence |4, cor. 3.4] the
set CI(A*EAB) is open in Spec(A*ﬂAB). Application of theorem 4 yields
that CI(B) is open in Spec(B).
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