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In the following G is a finite group. For each natural number
al at . . s g5 :
N =P Py with p, prime and pi;épj for every i#j, we define the num-
ber, di = di(n), to be the gréatest divisor of pi;l which is coprime to

n, and § = Gi(n) by

N

g.c.d.(p -1 | 12£j4t, j#i) if a;=1
Gi = Gi(n) =

N

1| 14§t ) if a1,

g.c.d.(p i

IS
where g.c.d.(mi | iel) denotes the greatest common divisor of the family

of numbers (mi | ieI) and we write 6 =1, in case t = a, = 1. In addi-

1
tion, we use the notation D(n) = g.c.d.(dlsl,...,dtdt).

1

Let r(G) be the number of conjugacy classes of elements of G. In [1],
G. Amit and D. Chillag prove the following congruence for finite groups
of odd orders:
r(G) = |G| (mod. D(|G|)),
by using character theory. The above congruence improves (when |G] has
some primary power of exponent 1) one well-Known A. Mann's congruence

(cf.[2]):

r(6) = |G| (mod. d(]G|).s(lG|)),
where 6(n) = g.c.d.(p2-1 | p is a prime dividingn ) and d(n) =

= g.c.d.(p-1 | p is a prime dividing n).

(*) This wark has been supported by the University of the Basque Country
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We now consider the following numbers

upi = upi(n) = g.c.d.(pj-l | 1=j¢t, j4i)

_ _ elpy) e(p;) .
Upi = °pi(n) = (271 .d(n).npi(n))/g.c-d-(Z 1 -d(n).upi(n) ; n)

where e(p,) = 0 if p.=2, and for p.#2 , e(p.) = 1 or O according as
i i i i

up (n)/d(n) is even or odd, respectively. In addition, for each natural
i

number s, and fixed the arrangement of the primary power dividing n, we

define

2

g.c.d.(p5-1 | 1€j=t, j#i) if 1%iss
cis) = ais)(n) = %

g.c.d.(pj—l | 12§t ) if i = s+l1.

In this work, the following congruence is proved without using character

theory:

r(G) = |G| (mod. l.c.m.(8(|G|)a(]|G|); ap(lGl). pel')),

where
= {p| pis a prime dividing |G|, and G has abelian Sylow p-subgroups} .
The above congruence improves G.Amit-D.Chillag's congruence. Indeed, if
r = {pll'-'vpu} ’
then the above congruence yields
r(G) = |G| (mod. D ,(lGI)/g.c.a.(D \(IGD),[6D)),
where
' (s) (s)
D(s)(n) = g.c.d.((Pl—1)61 (n),....,(pt—l)Gt (n)).
Clearly, D(|G|) divides D(u)(lGl)/g.c.d.(D(u)(IGI),|G|) and in general
are distinct numbers, since T contains all prime numbers dividing |G|
and with exponent less than 3. Further, the number
D G .c.d.(D Gl),I|G
(16D /g.c.a. (o yddeh.leh
may have common factors with |G|, whereas D(|G|) and |G| are relatively
prime numbers. Two examples at the end show that our results are in some

cases best possible.
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