ON THE THREE SERIES THEOREM IN NUMBER THEORY

Jesús de la Cal

Departamento de Matemáticas. Universidad del País Vasco. 48080 Bilbao.

AMS 1980 Class.: Primary 10K20; secondary 60B11.

Research supported by the University of the Basque Country.

Let (f_n) be a sequence of arithmetic functions (i.e. functions of natural argument) with values in a real, separable Banach space $(\mathfrak{X}, ||.||)$, and, for each n let P_n be the probability measure on the set N of natural numbers assigning the weight 1/n to each k = 1,...,n and 0 otherwise. If the sequence of probability measures on \mathfrak{X} , $(P_n f_n^{-1})$ converges weakly to a probability measure μ on \mathfrak{X} , we write $f_n \Rightarrow \mu$, or $f_n \Rightarrow \chi$ if μ is the probability distribution of the \mathfrak{X} -valued random variable χ . When $f_n = f_n$ all n, we simply write $f \Rightarrow \mu$, or $f \Rightarrow \chi$, and μ is said to be the limit distribution of f_n .

The following theorem gives sufficient conditions for the existence of the limit distribution for an \mathfrak{X} -valued additive function, i.e. a function $f: \mathbb{N} \longrightarrow \mathfrak{X}$ such that f(mn) = f(m) + f(n) whenever m and n are relatively prime. This result generalizes the part "if" of the famous Erdös-Wintner theorem for real additive functions (see, for instance |2|, Th.7.1 and 7.2).

THEOREM 1. Suppose $\mathfrak X$ r-smoothable (1< r \leqslant 2) and let f be an $\mathfrak X$ -valued additive function. If the two series

then
$$f - a_n \implies \sum_{\|f(p)\| < c} \left[f(p^b) - \frac{f(p)}{p} \right] + \sum_{\|f(p)\| > c} f(p^b).$$

Therefore, if a also converges (in the norm), then $f \Rightarrow \sum_p f(p^p)$, or, in case f is strongly additive (i.e. $f(p^k) = f(p)$ for $k = 1, 2, \ldots$) $f \Rightarrow \sum_p f(p) \ d_p$.

In this statement p ranges the set $\mathfrak P$ of prime numbers, the b_p are independent, integer-valued random variables, having the geometric distribution

$$P(b_p = k) = (1 - 1/p) p^{-k}$$
 $k = 0, 1, 2, ...,$

and d_p is the indicator function of the set $(b_p \geqslant 1)$.

A similar result, with the obvious modifications, is true if \mathfrak{X} is only supposed to be of type 2. (For the concepts of type r and r-smoothn-ble sec [3] and [5]).

The converse of Theorem 1 (i.e. the convergence of the three series is a necessary condition for the existence of limit distribution of f) holds true if \mathfrak{X} is finite-dimensional, but for general r-smoothable Banach spaces it is an open problem.

The proof of Theorem 1 depends upon the following lemma, which provides an inequality of the Turan-Kubilius type.

LEMMA 1. Let $\mathfrak X$ be of type $r-(1< r\leqslant 2)$ and let g- be an $\mathfrak X-$ valued, strongly additive function. There is a constant C, independent of g- and n, such that

$$E_{n} \mid \mid g - A_{n} \mid \mid^{r} \quad \leqslant \quad C \quad \sum_{p \leqslant n} \frac{\left| \mid g(p) \mid \mid^{r}}{p} \quad .$$

where $A_n = \sum_{p \le n} \frac{g(p)}{p}$ and E_n is the P_n -expectation.

Another consequence of this lemma is that if \mathfrak{X} is of type r and (f_n) is an array of \mathfrak{X} -valued additive functions, then the law of large numbers $\frac{f_n-\Lambda_n}{\psi_n\ B_n}\longrightarrow 0 \quad \text{holds for every sequence of real numbers}$ $\psi_n\longrightarrow \infty \quad \text{if} \quad \Lambda_n=\sum_{p\leqslant n}\frac{f_n(p)}{p} \quad , \quad B_n=\left(\sum_{p\leqslant n}\frac{||f_n(p)||^p}{p}\right)^{1/p} \quad \text{and}$ $\sup_{p}\frac{||f_n(m)||}{B_n}<\infty \quad , \quad m=1,\ 2,\ \dots \ (C.f.\ |2| \text{ for the case }\ \mathfrak{X}=R).$

As an application of the preceding results we consider the following: Let f be a real additive function and for each $p \in \mathcal{P}$ and $n \in \mathbb{N}$ let $\mathcal{B}_p(n)$ be the exponent of p in the prime factorization of n. Then $f^* = (f(p_1^{\beta_p}), \dots, f(p_k^{\beta_{p_k}}), \dots), \quad \text{where } p_1, p_2, \dots \text{ is an arrangement of prime numbers, is an additive function with values in the real, separable Hilbert space <math>p_1$. If f is integer-valued and $p_1 \neq p_2 \neq p_3 \neq p_4 \neq p$

REFERENCES

- [1] BILLINGSLEY, P. Convergence of Probability Measures. Wiley, New York, 1968.
- [2] BILLINGSLEY, P., The probability theory of additive arithmetic functions. Ann. Probab. 2 (1974), 749-791.
- [3] HOFFMANN-JØRGENSEN, J. and PISIER, G. The law of large numbers and the central limit theorem in Banach spaces. Ann. Probab. 4 (1976) 587-599.
- [4] RUZSA, I.Z. Generalized moments of additive functions. J.Number Theory. 18 (1984) 27-33.
- [5] SZULGA, J. Three series theorem for martingales in Banach spaces. Bull. Polish Acad. Sci. Math. 25 (1977), 175-180.
- [6] WOYCZYNSKI, W.A. Asymptotic behavior of martingales in Bunach spaces. Springer's Lecture Notes in Math. 526 (1975), 273-284.

To appear in THE ANNALS OF PROBABILITY.