ENDOMORPHISM RINGS THROUGH EQUIVALENCES 1

J.L.García and M.Saorín Departamento de Matemáticas Universidad de Murcia 30001 Murcia, Spain

A.M.S. Subject Classification: 16A65, 16A89, 18E35

The use of category equivalences for the study of endomorphism rings stems from Morita's Theorem. In a sense, this theorem can be viewed as stating that if P is a finitely generated projective generator of R-mod and S = $\operatorname{End}(_RP)$, then properties of P correspond to properties of S through the equivalence between the categories R-mod and S-mod given by the functor $\operatorname{Hom}_R(P, \cdot)$. Generalizations of this theorem were given, for instance, in [1] and [2]. In [1] P is only assumed to be finitely generated and projective, and $\operatorname{Hom}_R(P, \cdot)$ induces in this case an equivalence between S-mod and a quotient category of R-mod, while in [2] it is shown that if P is a finitely generated quasiprojective self-generator then the equivalence provided by the same functor is now defined between the category $\sigma(P)$ of all the R-modules subgenerated by P and S-mod.

Later on, more general category equivalences were constructed in an analogous way to those already mentioned, by replacing S-mod by a certain quotient category of itself. Thus, in [5] Morita contexts are used to obtain, for an arbitrary module $_R^M$, a category equivalence between the quotient categories $_R^{11}$ and $_S^{11}$ of R-mod and S-mod determined by the two trace ideals of the derived context of M. On the other hand, if M is a Σ -quasiprojective module, then it is shown in [3] that the functor $\operatorname{Hom}_R(M,-)$ induces an equivalence between quotient categories $\mathfrak{E}[M]$ of $\sigma[M]$ and (S,\mathfrak{F}) -mod of S-mod, and the latter quotient category coincides with S-mod when M is finitely generated.

In any case, two conditions are required in order to obtain, by means of these methods, necessary and sufficient conditions on a module $_R^M$ (or on a class of R-modules related to M) for its endomorphism ring S to have a specific property: first, a category equivalence between subcategories \mathfrak{E}_R of R-mod and \mathfrak{E}_S of S-mod must exist; second, S must be an object of the category \mathfrak{E}_S so that we

can relate properties of S to properties of certain objects of R-mod. If we compare the two constructions just mentioned, we see that while that in [5] is more general, since it applies to any module $_R^M$, the one in [3] is more effective in that S always belongs to (S,\mathcal{F}) -mod (but there is no need for S to belong to $_S^{ll}$ in [5]). On the other hand, these two constructions are the same in a sense: each of them considers the torsion theory of R-mod [5] or $\sigma[M]$ [3] in which the torsionfree objects are precisely the M-distinguished objects in the terminology of [4] and the quotient category $_R^{ll}$ or $\mathfrak{C}[M]$ corresponds to this torsion theory. So, if we try to unify these two constructions into a more general one (with an arbitrary Grothendieck category \mathfrak{C} substituted for either R-mod or $\sigma[M]$), then two questions (corresponding to the above two conditions) arise:

(1) Is there an equivalence between the quotient category of & with respect to the torsion theory induced by the torsionfree class of M-distinguished objects and a quotient category of S-mod?

(2) Under what conditions do we get that S belongs to the quotient category of S-mod in case the equivalence of (1) does exist?

The answer to (1) turns out to be affirmative under fairly general hypotheses. In fact, for an arbitrary Grothendieck category \mathcal{C} , let M be an object of \mathcal{C} , \mathbf{F} the class of M-distinguished objects (in the sense of [4]), (T, \mathbf{F}) the associated torsion theory of \mathcal{C} and $\mathcal{C}_{\mathbf{M}}$ the corresponding quotient category. Then we have:

Theorem 1. If \mathcal{C} is locally finitely generated, then the functor $\operatorname{Hom}_{\mathcal{C}}(M,\cdot):\mathcal{C} \longrightarrow S\operatorname{-mod}$ induces an equivalence of categories between \mathcal{C}_M (viewed as a subcategory of \mathcal{C}) and $(S,\mathcal{F})\operatorname{-mod}$, \mathcal{F} being the left Gabriel topology of S {I $\subseteq {}_{\mathbf{C}}S$ | M/MI is T-torsion}.

Concerning question (2), we need to make a couple of definitions in order to explain the answer. First, let us denote by t the torsion radical of \mathcal{E} associated to the above torsion theory (T,F), and by \tilde{M} the quotient M/t(M). Then, we say that M is weakly M-distinguished if the following two conditions are verified:

- (a) $Hom_{\mathcal{C}}(M, t(M)) = 0$.
- (b) For every morphism $f:M \longrightarrow M$ there exists an endomorphism s of M such that $p \circ s = f$, p being the canonical projection $M \longrightarrow M$.

On the other hand, we will say that an object X of $\mathcal E$ is T-M-injective if for each monomorphism $u:L \longrightarrow M$ of $\mathcal E$ such that

Coker u is T-torsion, we have that the canonical homomorphism u^* : Hom_C(M,X) \longrightarrow Hom_C(L,X) is a surjection. Finally, M will be called weakly T-closed if M is weakly M-distinguished and M is T-M-injective. Then we have:

Theorem 2. In the equivalence of Theorem 1, S is its own ring of quotients if and only if M is weakly T-closed.

Hence this condition is what is needed in order to obtain results about endomorphism rings by using category equivalences. But if $\mathcal B$ is a subcategory of a given category $\mathcal D$, then an object M may be weakly T-closed in $\mathcal B$ while not being so as an object of $\mathcal D$. In this sense, we have:

Proposition 3. Let M be a left R-module. If M is weakly T-closed in R-mod, then M is weakly T-closed as an object of $\sigma[M]$ (but not conversely).

This suggests that to study the endomorphism ring of a module M by using the equivalence of categories of Theorem 1, it is preferable to take $\mathcal{C} = \sigma[M]$ than $\mathcal{C} = \mathbb{R}$ -mod.

Finally, we state when the equivalence of Theorem 1 results in an equivalence between $\mathcal{C}_{_{\rm M}}$ and all of S-mod.

Theorem 4. Let \mathcal{F} , M, S and \mathcal{F} be as in Theorem 1. Then \mathcal{F} is the trivial filter $\mathcal{F} = \{S\}$ if and only if M is a finitely generated and quasiprojective object of \mathcal{F} which is CQF-3 in the sense of [6].

(An expanded version of this paper will appear in J.Algebra)

REFERENCES

- R.S.Cunningham, E.A.Rutter, D.R.Turnidge, Rings of quotients of endomorphism rings of projective modules, Pacific J.Math. 47 (1973), 199-220.
- 2. K.R.Fuller, Density and equivalence, J.Algebra 29 (1974), 528-550
- J.L.García Hernández, J.L.Gómez Pardo, On endomorphism rings of quasiprojective modules, Math.Z. 196 (1987), 87-108.
- 4. T.Kato, U-distinguished modules, J.Algebra 25 (1973), 15-24.
- B.J.Müller, The quotient category of a Morita context, J. Algebra 28 (1974), 389-407.
- K.Ohtake, Equivalence between colocalization and localization in abelian categories with applications to the theory of modules, J.Algebra 79 (1982), 169-205.