CARDANO TYPE ENTIRE FUNCTIONS

J. GUADALUPE * Departamento de Matemáticas
M. A. HERNANDEZ Departamento de Matemática Aplicada
UNIVERSIDAD DE ZARAGOZA . 50009 (SPAIN)
(*) Supported in part by a grant of the CAICYT , PB85-0338 .

1980 Mathematics Subject Classification: 30D15, 30D10, 40A20.

Let Q a polynomial of degree q , normalized by Q(0)=1 and with roots $[w_n]_{n=1}^q$. Cardano's formulas allow us to represent Q in the form

Q(z) =
$$\prod_{n=1}^{q} (1 - \frac{z}{w_n}) = \sum_{k=0}^{q} (-1)^k D_k z^k$$

where
$$D_0 = 1$$
 and $D_k = \sum_{1 \le i_1 < ... < i_k \le q} w_{i_1}^{-1} ... w_{i_k}^{-1}$ for ksq.

The main subject in this paper is to extend this situation to entire functions, that is to study when

(1)
$$f(z) = \prod_{n \ge 1} (1 - \frac{z}{w_n}) = \sum_{k \ge 0} (-1)^k D_k^2 z^k$$

is verified , being $\Lambda = [w_n]_{n=1}^{+\infty}$ the zeros of the entire function f , normalized by f(0)=1 and

$$D_{k} = \lim_{n} \sum_{1 \le i_{1} \le ... \le i_{n} \le n} w_{i_{1}}^{-1} ... w_{i_{k}}^{-1}$$

Several questions arise when we consider this problem: (i) the convergence in ${\bf C}$ of the infinite product $\pi(1-z\,w_n^{-1})$. (ii) the existence of D_n and convergence of the series Σ (-1)^k $D_k\,z^k$. (iii) conditions about f so that (1) can be satisfied. This study is connected with a particular type of multiplier sequences of the first kind of Laguerre-Pólya.

In what follows, A=[w_n]_{n=1}^{\infty} stands for an unbounded set of complex numbers no zeros , with no limit points and rank m

<u>DEFINITION 1</u> Π (1 - z w_n^{-1}) is said to be an **infinite product** Cardano type (denote $\Lambda = CT$), if it coincides with Σ (-1)^K D_K z^K

and defines an entire function.

This definition leads us firstly to study the existence of the D $_K$, and it is connected with the series B_1 = Σ w_n^{-j} .

LEMMA

 D_k exists for every k if only if B_k exists for every k. Moreover

$$D_{k+1} = \frac{(-1)^k}{k+1} \left[B_{k+1} + \sum_{l=1}^k (-1)^l D_l B_{k+l-l} \right]$$

It is an infinite version of the Newton-Girard formula .

THEOREM 1

 $\Lambda \in CT$ if and only if every B_k exists for $1 \le k \le m$.

The existence of $\ B_k$, 14ksm , is equivalent to that Π (1 - z w_n^{-1}) converges uniformly on compacts , and also , it turns out to be equivalent to verify that $-\log \left[\ \Pi \ (1-z \ w_n^{-1}) \ \right] = (-1) \ \Sigma \ B_k \ z^k/k$ in D(0,R) , being log the principal branch of the logarithm .

Below we give some geometrical conditions on the set $\Lambda=[w_n]_{n=1}^{+\infty}$ in order to obtain infinite products Cardano type .

COROLLARY 1

(i) If $\Lambda \subset S$, where S is a closed sector with vertex in the origin and amplitude smaller than π , and B_1 exists, then $\Lambda \circ CT$ and

$$\prod_{n \ge 1} (1 - \frac{Z}{w_n}) \text{ converges absolutely }.$$

- (ii) If $\Lambda \subseteq S^*$, where S^* is a closed sector with vertex in the origin and amplitude smaller or equal than π , and B_1 , B_2 exist then $\Lambda \in \mathbb{C}T$.
- (iii) Let $\mathbf{\Lambda}$ be with $0 < |\mathbf{w}_1| < |\mathbf{w}_2| < \dots$. If B_j , $|\leq j \leq k$, exist and α , β are real numbers such that $0 < \alpha \beta < 2\pi k/k + 1$ and $\alpha \leq \arg w_n^{-1} < \beta$, $n = 1, 2, \dots$, then $\mathbf{\Lambda} \in CT$.

Next we indicate a method to obtain CT sets begining from $\Lambda = \{w_n\}_{n=1}^{+\infty}$. Let p be such that $2^{p-1} \le k \le 2^p$ and denote by α_n , $n=1,2,...,2^{p-1}$, the $2^p \text{th roots of unity}$. We define $a_k = w_1 \alpha_{k-1}^{-1}$ if $1 \le k \le 2^p$ and $a_k = w_{n+1} \alpha_r^{-1}$ if $k > 2^p$, where $k=n \ 2^p + r$. Then $\{a_k\} = \text{CT}$.

In what follows let $\,f\,$ stand for an entire function with finite exponential order $\,p\,$ (exp.ord. $\,f\,=\,p$) normalized by $\,f(0)=1\,$, and with rank $\,m\,$, i.e., $\,m\,=\,$ rank $\,Z_f\,$ being $\,Z_f\,$ the set of zeros of $\,f\,$.

DEFINITION 2 We say that f is Cardano type (denote f ■ CT), if

there is a rearrangement [w_n] $_{n=1}^{+\infty}$ of $\,Z_f\,$ such that

$$f(z) = \prod_{n \ge 1} (1 - \frac{z}{w_n}) = \sum_{k \ge 0} (-1)^k D_k^{-1} z^k$$

Denote $H(z) = log [\Pi (1 - z w_n^{-1})]$ where log is the principal branch of the logarithm in D(0,R).

THEOREM 2

f \in CT if and only if there is a rearrangement of set Z_f such that $H^{(k)}(0)=(-1)(k-1)!$ B_k for k=1,2,...

If $\{ \boldsymbol{r}_k \}_{k=0}^{+\infty}$ is a multiplier sequence $(\boldsymbol{r}_0 = 1)$ such that $F(z) = \sum \boldsymbol{r}_k z^k/k!$ is an entire function of exponential order smaller than one, then F = CT and $D_k = (-1)^k \boldsymbol{r}_k/k!$ for $k \ge 0$. The zeros of F can be calculated by means of an iterative process.

We give some results related to derivatives of Cardano type functions , observing that they have , in some cases , analogous properties to the polynomials.

COROLLARY 2

(i) If f is an even or odd function and exp.ord. f < 2, then $f^{(k)} = CT$. (ii) Let f = CT and $Z_f \subset \mathbb{R}$. Then

- (a) $Z_{f'} \subset \mathbb{R}$ and rank $f' \leq 1$. Moreover, between two simple zeros of f there is one and only one of f', and it turns out to be for every derivative when the exponential order of f is not a natural number.
- (b) exp. ord. $f \le 2$ and $f^{(k)}$ takes real values on $I\!\!R$ for every k. (c) If exp. ord. < 2, $f^{(k)} = CT$ for every k.
- (d) If exp.ord.f=2, there exists $A=\mathbb{R}$ such that $f^{(k)}(z)exp(-Az^2)=CT$. REFERENCES
- [1] T. Craven and G. Csordas , "Location of zeros , PART I: Real polynomials and entire functions " , Illinois J. Math. , Vol. 27 (1983) , pp 224-278 .
- [2] B. JA. Levin , " Distribution of zeros of entire functions " , Traslations of Mathematical Monographs , Vol. 5 (1980).
- [3] Boas, "Entire functions", Academic Press (1954).
- [4] G. Pòlya and G. Szegö, "Problems and theorems in analysis", Vol.I, Springer-Verlag (1972).
- [5] L. Tchakalov , Uber. Deutsch. Math. Verein. , Section 2 , 37 , pp. 30-33 (1928).
- [6] Titchmarsh, "The zeros of certain integral functions", Proc. London Math. Scc. (2) 25, 1926, pp 283-302.