Alternative Algebras which are L-isomorphic to a central division Cayley-Dickson algebra of characteristic 2.

J. A. Laliena

C.U.R. (University of Zaragoza) c/Obispo Bustamante nº 3 26001. Logroño. Spain. A.M.S. Classification 17D05

Abstract: Alternative algebras which are L-isomorphic to a central division quaternion algebra of characteristic 2, and to a central division Cayley-Dickson algebra of characteristic 2 are studied. In the second case, we show they are purely inseparable extension fields with dimension 8 or central division Cayley-Dickson algebras.

Introduction

Alternative algebras which lattice of subalgebras is L-isomorphic to the lattice of subalgebras of a semisimple non division alternative algebra, and to a central division Cayley-Dickson algebra of characteristic not two were already studied in [3]. Here we complete [3], showing what happens with central division Cayley-Dickson algebras with characteristic two.

We recall an alternative algebra is a not necessarily associative algebra that verifies the following identities:

$$x^2y - x(xy) \qquad yx^2 - (yx)x \qquad (1)$$

From (1) we remark that associative algebras are alternative. But there are alternative algebras that are not associative. For example simple alternative algebras are associative or Cayley-Dickson algebras [1], [2], and the last ones are not associative.

In the following by an alternative algebra we mean an alternative algebra over a field F with characteristic 2 and finite dimensional.

omitted

The map Φ from the lattice of subalgebras of A onto the lattice of subalgebras of B, denoted by L(A) and L(B) respectively, is said L-isomorphism if it is a one-to-one map and it verifies:

 $\Phi(C \lor D) = \Phi(C) \lor \Phi(D)$ and $\Phi(C \cap D) = \Phi(C) \cap \Phi(D)$

for all C, D \leq A and where CvD-the least subalgebra of A containing C and D. Now we show the table of the basis of a central Cayley-Dickson algebra C over a field F with characteristic 2, where the element $1_{\mathbb{C}}$ is

	v _i	v ₂	v_2v_1	V	vv_1	vv ₂	$v(v_2v_1)$
$\mathbf{v_i}$	v₁+μ	v ₂ (1+v ₁)	μv_2	vv _i	μv	v(v ₂ v ₁)	μνν2
v_2	v_2v_1	β	βv_i	vv_2	$v(v_2v_1)$	βv	βvv_1
v_2v_1	ν ₂ (ν ₁ +μ)	$\beta(1+v_1)$	βμ	$v(v_2v_1)$	$v(v_2v_1+\mu v_2)$	$v(v_2 + \mu)$	$\beta(vv_1+\mu v)$
v	vv ₁	vv_2	$v(v_2v_1)$	γ	γv_1	γv_2	$\gamma v_2 v_1$
vv ₁	ν(v ₁ +μ)	$v(v_2v_1)$	$v(v_2v_1+\mu v_2)$	γv_1	$\gamma(\mu + v_1)$	$\gamma(v_2+v_2v_1)$	$\gamma \mu v_2$
vv_2	$v(v_2+v_2v_1)$	βv	$\beta(v+vv_1)$	γv_2	$\gamma(v_2+v_2v_1)$	γβ	$\gamma(\beta + \beta v_1)$
$v(v_2v_1)$	μνν ₂	βvv_1	βμν	$\gamma v_2 v_1$	$\lambda h r^{3}$	$\gamma \beta v_1$	yβμ

From [4] it is known that maximal subalgebras of C are quaternion algebras. Thus, for study alternative algebras L-isomorphic to a central division Cayley-Dickson algebra with characteristic 2, we need to know first alternative algebras, A, L-isomorphic to Q, central quaternion division algebra with characteristic 2 (then Q has a basis $\{1, v_1, v_2, v_2v_1\}$). Because of [3] A will be a nilpotent algebra or a division algebra.

Lemmal: A nilpotent alternative algebra, A, is L-isomorphic to Q if and only if A is three dimensional over F and has a basis over F, (a, b, c), such that his multiplication table is given by: $a^2 = ab = c$ ba = 0 $b^2 = \gamma c$ with $\gamma \in F - (0)$, and moreover F must verify that the equation $X^2 + X + \gamma = 0$ has not solution in F.

Proof- (see [3])

Lemma 2: Let A be a division alternative algebra L-isomorphic to Q. Then A is a purely inseparable eight dimensional extension field of F or a division central quaternion algebra.

-Proof-

Subalgebras of Q with length two will be purely inseparable extension fields of F or separable extension fields of F with dimension 2, such that two of them, which are different have intersection F and they span all Q.

In the same way than [3] we can show now A is a purely inseparable extension field with dimension eight or A is m^2 -dimensional division associative algebra with length three and where m is the dimension of the subfields of A with length two (which must be purely inseparable extension fields of F or separable extension fields of F).

Since characteristic of F is 2, we will have m=2 and therefore dimension of A is 4. But then A is a simple quadratic algebra. From [5] A will be a central division quaternion algebra.

Theorem: If A is an alternative algebra L-isomorphic to a central division Cayley-Dickson algebra with characteristic 2, then A is a purely inseparable extension field of F with dimension eight or a division central Cayley-Dickson algebra.

-Proof-

Apply [1] and this fact: In C the subalgebras Q_1 , Q_2 with F-basis {1, v_1,v_2,v_2v_1 }, {1, v,v_1+vv_2 , vv_1+vv_2 } have the following property: $Q_1 \cap Q_2 = F$.

<u>Corollary:</u> If F is a perfect field and A is an alternative algebra Lisomorphic to a central division Cayley-Dickson algebra, then A is also a central division Cayley-Dickson algebra.

REFERENCES

[1] E. Kleinfeld: "Alternative division rings of characteristic 2" Proc.
Natl. Acad. Sci. Vol 37, No. 12, pp 818-820. December 1951.

p.p. 544-547.

- [2] E. Kleinfeld: "Simple alternative rings." Ann. of Math. (2) 58 (1953)
- [3] J. Laliena: "Lattice isomorphisms of alternative algebras" J. of Algebra (to appear).
- [4] M.L. Racine: "On Maximal subalgebras" J. of Algebra 30 (1974) p.p. 155-180.
- [5] K.A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov: "Rings that are nearly associative" Academic Press. New York. (1982).