FINITELY ADDITIVE INTEGRATION II

Ву

H. Günzler

and

M. Díaz Carrillo

Mathemathische Seminar. Kiel. F.R. Germany.

Dpto, Análisis Matemático,

• Univ. Granada. Spain.

AMS class: 28A10, 28A20, 28A25.

In [1] the initial ϵ lemental integral I is extended to a class B_O of I-summable functions by the previous introduction of the appropriate oscillation integrals \overline{I} and \underline{I} .

For results and terminology we refere the reader to [1],[2] and [3].

<u>Definition</u> 1. (\overline{I} -convergence). Let f, $(f_n)_n \subset \overline{\mathbb{R}}^X$, $f_n \to f(\overline{I})$ means to each $h \in B$, $h \geqslant 0$, $\epsilon > 0$, there exists $n_o(\epsilon,h) \in \mathbb{N}$ such that $\overline{I}(/f_n - f/\wedge h) < \epsilon$ if $n \geqslant n_o$.

<u>Definition</u> 2. The set R(B,I) of I-integrable functions is defined as the set of all $f \in \overline{R}^X$, to which there exists a sequence $(h_n)_n \in B$ which is an \overline{I} Cauchy-sequence and with $h_n \to f(\overline{I})$.

If $f \in R(B,I)$, $\widecheck{I}(f) := \lim_{n \to +\infty} I(h_n)$ as $n \to +\infty$.

 $R(B,\mathcal{I})$ is an R-lattice and \widetilde{I} is linear on it.

For any $f \in R(B,I)$, //f// := $\widetilde{I}(/f/)$ and B is //-/ dense in R(B,I),

Theorem 1. R(B,I) is "closed" with respect to \overline{I} -convergence, i.e. let $f \in \overline{R}^X$, $(f_n)_n \in R(B,I)$ I-Cauchy-sequence such that $f_n \to f$ (\overline{I}) , then $f \in R(B,I)$ and $\widetilde{I}(/f_n - f/) \to 0$ as $n - - + \infty$.

Corollary. (Monotone convergence theorem). Let $(f_n)_n \in R(B,I)$, $f_n \in f_{n+1}$, $n=1,2,\ldots$, with $f_n \to f(\overline{I})$ and $\sup I(f_n) < +\infty$. Then, $f \in R(B,I)$ and $\widetilde{I}(/f_n - f/) \to 0$ as $n --+\infty$.

Theorem 2 (Lebesgue's bounded convergence theorem). Let $(f_n)_n \subset R(B,I)$ such that $f_n \to f(\bar{I})$ and $/f_n/\subseteq g \in R(B,I)$, $n=1,2,\ldots$.

Then, $f \in R(B,I)$ and $\widetilde{I}(/f_n-f/) \to 0$, as $n--+\infty$.

In the following some consequences are derived.

1.- $B_o := \{ f \in \overline{R}^X ; \overline{I}(f) = \underline{I}(f) \in R \} \subseteq R(B,I) \text{ and } I(f) := \overline{I}(f) = \widetilde{I}(f), \text{ for all } f \in B_o.$

If $f \in R(B,I)$, then $f \in B_o$ iff $f \in B_o$.

In particular, theorem 1 and theorem 2 can be formuled in B_{o} (see [1]).

2.- Let Ω be a semiring of subsets of X and μ a nonnegative finitely additive measure on Ω . B_{μ} denotes the set of all the step-functions and $I_{\mu} := \int d\mu$ as usual. Now, starting from I_{μ} and B_{μ} by using the above general methods, we obtain the class $R(B_{\mu}, I_{\mu})$ of I_{μ} -integrable functions.

 $\mathbb{R}^{2}(\mu,\,\mathbb{R})$ denotes the set of all the abstract-Riemann-integrable functions of [5] .

In [2] it is shows that $R^{1}(\mu,R) \subseteq B_{o} + \{f \in \overline{R}^{X}, \int f d_{\mu} = 0\}$.

Now, it has been shown that in $R^1(\mu, R)$ convergence μ -locally of [5] and $\overline{\mathbf{I}}$ -convergence both coincide, therefore we have the following result: $R^1(\mu, R) \subseteq R(B\mu, I\mu)$ and $\int f d\mu = \widetilde{\mathbf{I}}(f)$ for all $f \in R^1(\mu, R)$. Thus, the lebesgue's convergence theorems in $R^1(\mu, R)$ are hold.

3.- The "\$\mu\$-integrability" and the integral defined by Dunford-Sch -Schwartz in [4], are special cases of the "abstract-Riemann-integrability" of [5]; and only if \$\Omega\$ is an algebra and \$\mu(X) < + \infty\$, these concepts coincide (convergence in \$\mu\$-measure, locally-\$\mu\$-convergence and \$\overline{I}\$ -convergence are equivalent).

References:

- 1. Bobillo Guerrero,P. and M. Diaz Carrillo. Summable and integrable functions with respect to any Loomis system. *Arch. Math.*, vol. 49. 245-256, (1987).
- 2. . On the summability of certain μ -integrable functions. Arch. Math. , vol.52, 258-264. (1989).
- 3 ——— . Finitely additive integration. Extracta Math.,2, nº3, 102-104, (1987).
- 4. Dunford N. and J.T. Schwartz. Linear Operators, part I., New York, 1963.
- 5. Gunzler H. Integration. Bibliographsches Institut Mannheim, 1985.