DUALITY PROPERTIES OF INJECTIVE MODULES

José L. Gómez Pardo

Departamento de Matemáticas, Universidad de Murcia 30001 Murcia (Spain)

AMS Subject Classification (1980): 16A49, 16A52, 16A65

A Morita duality between two rings R and T is always induced by a faithfully balanced bimodule $_{R}U_{T}$ such that $_{R}U$ and U_{T} are injective cogenerators. In [13], an asymmetrical generalization of Morita duality has been given by considering "duality R-modules", i.e., bimodules $_{\mathrm{R}}\mathrm{U}_{\mathrm{T}}$ such that _pU is a finitely cogenerated linearly compact quasi-injective self-cogenerator and T is naturally isomorphic to $\operatorname{End}({}_{\mathbb{R}}U)$. It has been remarked in [13] that these modules can be regarded as "1/2-Morita duality modules", because $_{R}U_{T}$ is a Morita duality module if and only if it is a duality R-module and a (right) duality S-module. However, they are in some sense rather more than 1/2-Morita duality modules for if $_RU$ is a module and $T = \text{End}(_{\mathbb{R}}U)$, then $U_{\mathbb{T}}$ can be an injective cogenerator without $_{\mathbb{R}}U$ being finitely cogenerated nor linearly compact nor a self-cogenerator. Thus the question arises of giving necessary and sufficient conditions on $_{\mathbf{p}}\mathbf{U}$ for $\mathbf{U}_{\mathbf{T}}$ to be an injective cogenerator.

We will attack this problem by looking first at the simpler one of determining when U_T is injective, i.e., when $_RU$ is a counterinjective module. There is a result due to Würfel [12] and Damiano [4] which will be helpful for this purpose, namely, U_T is FP-injective (i.e., $\operatorname{Ext}_T(F,U)=0$ for every finitely presented right T-module F) if and only if $_RU$ cogenerates all cokernels of homomorphisms $U^m\longrightarrow U^n$. It is also well known that the linear compactness of $_RU$ is closely related to the injectivity of U_T (see [8], [10]). But it is easily seen that a counterinjective module is not necessarily linearly compact (in the discrete topology) and so we will make use of the following more general concept: A left R-module X will be called U-linearly compact when each finitely solvable system of congruences $x\equiv x_i\pmod{X_i}$, with the X_i U-closed submodules of X (i.e., such that X/X_i is U-cogenerated), is solvable [6]. We then get the following characterization of counterinjective modules:

Theorem 1. A left R-module $_{\mbox{\scriptsize R}}^{\mbox{\scriptsize U}}$ is counterinjective if and only if the following conditions hold:

i) Every cokernel of a homomorphism of the form $U^m \longrightarrow U^n$ is U-cogenerated. ii) U is U-linearly compact.

Several results scattered in the literature can be recovered as easy corollaries of Theorem 1. For instance we mention [8, Coroll. 1, p. 119], [10, Coroll. 2, p. 342], and [9 Theorem 1]. As another application, we get the following characterization of rings with Morita duality which improves [6, Corollary 3].

Corollary 2. Let $_R^{}U_T^{}$ be a faithfully balanced bimodule such that $_R^{}U$ is a cogenerator and the injective envelope of $^{}U_T^{}$ is cogenerated by $^{}U_T^{}$. Then R has a left Morita duality.

The proof consists in using results of [3] and [7] to show that $_{\mbox{\scriptsize R}}^{\mbox{\scriptsize U}}$ is counterinjective and then one can apply Theorem 1.

If we consider faithfully balanced bimodules $_RU_T$ that are injective and counterinjective, it is easy to see that they induce a Morita duality (in the sense of [1]) between the quotient categories of R-Mod and Mod-T modulo the localizing subcategories defined by $_RU$ and U_T . The following result gives an indication of how close is R to having a Morita duality in this case. Recall that an R-module X is said to have U-dominant dimension ≥ 2 (U-dom dim X ≥ 2) if there exists an exact sequence $0 \to X \longrightarrow X_1 \longrightarrow X_2$, in which X_1 and X_2 are direct products of copies of $_RU$.

Theorem 3. Let $_RU$ be an injective and counterinjective module. If every direct sum of copies of $_RU$ has U-dom dim ≥ 2 , then T is semiperfect. If U is faithfully balanced and the class of modules of U-dom dim ≥ 2 is closed under direct unions, then R has a left Morita duality.

As a consequence we get the following extension of [5, Coroll. 10.14]. Recall that an R-module X is called Σ -injective (resp. Δ -injective) when it is injective and R satisfies the ascending (resp. descending) chain condition on annihilators of subsets of X.

Corollary 4. Let $_RU_T$ be a faithfully balanced bimodule such that $_RU$ is Σ -injective (resp. Δ -injective) and U_T is injective. Then R is a left noetherian (resp. artinian) ring with a left Morita duality.

Recall that a module U is quasi-injective if, for every submodule X of U, the canonical homomorphism $\operatorname{Hom}_R(U,U) \longrightarrow \operatorname{Hom}_R(X,U)$ is an epimorphism. Using Theorem 1 we can now characterize the quasi-inujective modules $_RU$ such that U is an injective cogenerator.

Theorem 5. Let $_{\mathbf{R}}U$ be a quasi-injective module and $T = \operatorname{End}(_{\mathbf{R}}U)$.

Then the following conditions are equivalent:

- i) $U_{\mathbf{T}}$ is an injective cogenerator
- ii) $_{\mathbf{p}}\mathbf{U}$ satisfies the following conditions:
 - a) $_{\mathbf{p}}U$ cogenerates all the cokernels of homomorphisms $U\longrightarrow U^{n}$.
 - b) DU is U-linearly compact.
 - c) The lattice of U-closed submodules of ${\ensuremath{R}} ^{\ensuremath{U}}$ has the finite intersection property.
- iii) Every cyclic right T-module and every U-cogenerated quotient of U are U-reflexive.

We remark that the artinian injective modules $_RU$ which cogenerate an exact tomsion theory (see [11] for the definition) satisfy all the conditions in ii) of Theorem 5, so that in this case, U_T is not only injective as asserted in [2, Theorem 4.2] but is also a cogenerator.

The proofs of the foregoing results, except Corollary 2, will appear in [6].

References

- 1. R.R. Colby and K.R.Fuller, QF-3' rings and Morita duality, Tsukuba J. Math. 1 (1984), 183-188.
- 2. G.D. Crown and J.J. Hutchinson, On the exactness of the completion functor, Commun. Algebra 8 (1980), 1-12.
- 3. R.R. Colby, Tilting modules, dominant dimension and exactness of duality functors, Tsukuba J. Math. 12 (1988), 441.449.
- 4. R.F. Damiano, Modules coflat over their endomorphism rings, Houston J. Math. 9 (1983), 373-382.
- 5. C. Faith, Injective Modules over Levitzki Rings, Lecture Notes in Pure Appl. Math., vol. 72 (Marcel Dekker, New York, 1982).
- 6. J.L. Gómez Pardo, Counterinjective modules and duality, to appear in J. Pure Appl. Algebra.
- 7. J.L. Gómez Pardo and N. Rodríguez González, On QF-3 and QF-3' modules and rings, unpublished.
- 8. T. Onodera, Linearly compact modules and cogenerators, J. Fac. Sci. Hokkaido U. 22 (1972), 116-125.
- 9. F.L. Sandomierski, Some examples of right self-injective rigs which are not left self-injective, Proc. Amer. Math. Soc. 26 (1970), 244-245.
- 10. F.L. Sandomierski, Linearly compact modules and local Morita duality, in: R. Gordon, ed., Ring Theory (Academic Press, New York, 1972).
- 11. B. Stenström, Rings of Quotients (Springer-Verlag, Berlin, 1975).
- 12. T. Würfel, Über absolut reine Ringe, J. Reine Angew. Math. 262/263 (1973), 381-391.
- 13. J.M. Zelmanowitz and W. Jansen, Duality for module categories, to appear in J. Algebra.