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Tauberian operators appeared in a problem of summability [4] and were
studied by Kalton and Wilansky [10] _and other ‘authors [1, 5, 7, 11, 12].
Recently they have received some attention because they form a broader class
than that of isomorphims (into), but yet they preserve some isomorphic
properties of Banach spaces [8, 9.

Let T* € L(Y*X*) and J(X) denote the conjugate operator of a
continuous linear operator T € L(X,Y) and the immersion of a Banach space
X in the second dual X**. T is tauberian when T**_IJ(Y) = J(X).

Upper semi-Fredholm operators (operators with closed range and finite
dimensional kernel) are trivial examples of tauberian operators since they
are isomorphisms up to finite dimensional subspace.

The main source of non trivial examples of tauberian operators is the
celebrated factorization of Davis et al. (DFJP factorization) [3].

In this paper we show that all the conjugates of even order of the
second factor in the DFJP factorization are tauberian operators. Then, using
a particular case of a construction of Bellenot [2], we obtain a Banach
space and a tauberian operator T in this space such that the second

'coﬁjugate T** is not tauberian, answering a question ‘of Kalton and
Wilax;sky [10]. Finally we present a simple example showing that the class of
tauberian operators is not always open A(another example showing it can be
found in [11]) and prove that tauberian operators wifh closed range -A,do not

belong to the boundary of this class.

Proposition 1 Let j be the second factor in the DFJP factortiétion.

j(Zn) is a tauberian operator for every n =0, 1, 2,...

For T € L(X,Y) let qu L(X**/X, Y**/Y) given by Tq(F+X) = T**F + Y
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Proposition 2 [12; 6, 2.8] T is tauberian if and only if Tq is

injective. Moreover we can identify (Tq)" = (T"““)q.

Observation 3 From the above characterization it is clear that for X**/X

reflexive, we have T e L(X,Y) tauberian if and only if so is T**.

Now we show that there are tauberian operators whose second conjugate

.

is not tauberian. We use a construction of Bellenot [2].

We denote by e, the unit vector basis of 81, Xn the subspace of
lll generated by (el, en), and
JX):={(x):x e€eX, IxlIl, 50 and l(x )l < w}
n n n n nl nJ
k-1
2 2 2
le(xn)llJ :=sup {( } I(xn X, =) + len = o < n, < .. n }
i=1 1+1 i Kk
Theorem 4 (1) ( J(Xn) , IIJ ) is a Banach space.
(2) X )™ ={(x):x e€eX , IMx)I <o}
n n n n n J
(3) J(Xn)*"‘-/J(Xn) is isometric to 21.
The operator T € L(El)o given by T(xn) 1= (xn/n) is injective, but

T** is not injective. On the other hand, let us consider in J(Xn) the

operator defined by S(xn) = (Txn).

Proposition 5 (a) S e L(J(Xn)) and Sq = T (up to an isometry).
B)

(b) S is tauberian, but S** is pot tauberian.

Observation 6 Denote by WCo the class of all weakly compact operators. In
[71 it is proved that an operator T e L(X,Y) is tauberian if and only if
for every space Z and A € L(Z,X) we have that TA € WCo > A € WCo.
We can consider a dual definition: T € L(X,Y) 1is cotauberian if and
only if for every space Z and B € L(Y,Z) we have BT € WCo = B € WCo.
We have that T € L(X,Y) is cotauberian if and only if T* s
tauberian [6,7]. Moreover T* cotauberian implies T  tauberian. However

the above example shows that the remaining implication is not true.

In general, the class of tauberian operators is not open in L(X,Y).

This fact, observed by Tacon [ll], can be seen easily as follows.



Let X be a non-reflexive Banach space, and consider the operator
defined by
-1
T: (xk) € ZZ(X) — (k xk) € 82(X)

Since ZZ(X)" ZZ(X"), it is clear that T and all its conjugates

of even order are tauberian. However by the operators Tn given by
-1 -1°
Tn : (xk) € ZZ(X) —_— (xl, 2 Xy wenol X, 0, 0,...) € ZZ(X)

verify IITrl - Tl = 1/n, but clearly Tn are not tauberian.

Next result shows that the condition R(T) not closed is essential.

Proposition 7 Tauberian operators with closed range do not belong to the

boundary of the class of tauberian operators.
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