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Introduction.-In this paper we intreduce "n.a. Hilbert spaces" in
which the norm stems from a certain hermitian sesquilinear form, what is a
generalization of the Springer spaces. We study the orthogonality and
characterize the Riesz-Frechet mapping range. The adjoint of an operator is
defined. It allows us to introduce an operator C*-algebra that is maximal
in a n.a. Hilbert space. A matricial representation is given for the
C*-algebra in the space co.Essential differences respect to the usual, real
or complex case, are seen.

K will denote a complete field with characteristic different from 2,
not trivial valued n.a., and with an involution aeK > aeK and E will
denote a linear space over K.

1.- Non archimedean inner products

(1.1) Definition.- A non a chimedean inner product in E is a hermitian and

anisotropic sesquilinear form  ¢(x,y) = (x,y) defined in E such that the
mapping II.ll:xeE — IIxII:=|(x,x)lV26[R is a non-archimedean norm. If
besides (E,lIl.l) is complete, then E is said to be a n.a. Hilbert space.

(1.2) Theorem.- If the involution of K is isometric and [2|=l , then every
hermitian and anisotropic sesquilinear form in E is a n.a. inner product
that verifies [(x,y)| = lixlliyll Vx,yeE.
(1.3) Definition.- Given a vector system S=(eiliel) c E-{0} , we shall say
n
that S is a N-orthogonal system (NOS) if for all x = ):ockel with ackeK ,
k=1  k
ikel , it holds IIxll = max ll« e II. We shall say that S is an E-orthogonal
1=k=n Kk
system (EOS) if (el,eJ)=0 for all i#j..
(1.4) Theorem.- Let E be a n.a. inner product space over K such that |2|=l.
Then every EOS is a NOS.
The following terminology was introduced in [2]: A subspace M of a
n.a. inner product space E over K is called orthocomplemented if M @ M'= E.
L. .
If M™ is a normic complement of M too, M is said well complemented.
(1.6) Definition.- We shall call Riesz-Frechet dual of the space E to the
range ERF of h.
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(1.8) Theorem.- Let E be a n.a. inner product space over K , and let
feE’-{0}. The following conditions are equivalent:

(i) N(f)*#(0)

(ii) fEERF

If besides [2]=1, the following is equivalent too :

(iii) N(f) is orthocomplemented (then, well coriiplemented).

2.- The n.a. Hilbert space of sequences

(2.1) Proposition.— Let K be with an isometric involution, and |2|=1. Then

o
(, ) (@ab)=la),(B ) ec(K)xc(K) > (abki=F aB €K
n m o o n=1 nn
is a hermitian and non-degenerate sesquilinear form. If ( , ) is

anisotropic, then co(K) is a n.a. Hilbert space. That ‘situation occurs if K
is one of the formal series fields Kl , i=1,2,3 of [1].
(2.2) Theorem (of Riesz-Frechet for c (K)).- Let K be with a continuous (in
o

particular if isometric) involution, such that co(K) is a n.a. Hilbert
space, and feco(K)'. Then, the following properties are equivalent:

(i) feco(K)RF

(ii) lim f(e ) = O, where e =(8 |keN) ; i.e. (f(e ))ec (K).

n n n nk n o

Furthermore, co(K)RF is a proper subspace of co(K)’=lm.

3.- n.a. C*-algebras of operators

Along this section, E, F and G will be n.a. Hilbert spaces over K ; hx
will denote the Riesz-Frechet mapping of the n.a. Hilbert space X. We shall
also suppose that [2|=1 (in K).
(3.1) Adjoint operators

Let us consider the subset £ (EF):=(T€Op(E,F) | D(T)'=(0}}, and the
mapping * : TE.‘EO(E,F) — T*eOp(E,F).

(3.2) Proposition.- Let TEEO'(E,F). Then :
. ) = (7% oh )}
(i) D(T*) = (T hF) (ERF)

i) TrehtoT o
(ii) T*=h =T hFlD(T*)'

(3.4) Theorem.- Let A:={TeL(E) | T’ (ERF)CERF). Then:
(i) A = {TeL(E) | D(T*)=E}
(ii) A is a non-commutative unitary Banach algebra over K.
(iii) The map * is an invciution on A.
(iv) A is a n.a. C*-algebra.
(v) A contains the orthogonal projections of the well complemented

subspaces of E.



4.- The C*-algebra of operators on the n.a. Hilbert space goﬂ(;)
Let K be now with an isometric involution, where |2|=1 and such that
QO(K) is a n.a. Hill’_)ert space with the inner product of the section 2.
(4.1) Lemma.- Let E be a n.a. inner product space over K , and TeL(E). The
mapping
L (X,y)eEXE —» (oT(x,y):=(Tx,y)eK

is a bounded sesquilinear form in E such that lltpTII = NITIH.

(4.2) Lemma.- Let E=c°(K) and ¢:EXE — K  a bounded sesquilinear form.
Then there exists an operator TeL(E) such that ¢=¢T , where #r is the
sesquilinear form of the lemma (4.1), if and only if for all xeE is
I}m qp(x,el] = 0. In such a case, the operator T is unique.

(4.3) Theorem.- Let TeL(co(K)) and A=(TeL(co) | T*eL(co)). Then TeA if and

only if for all yeco(K) , l}m (Tel,y)=0. Besides A¢L(CO(K)).
(4.4) Matricial representation of IEMQO!KH

Given TeL(co(K)) , T determines and is determinated by the infinite

matrix [aU] according to the equation Tx = x[aU] , where the i-th row
of [oLU] is the coordinate vector of Tel.
(4.5) Theorem.- Let [ocU] be an infinite matrix of elements in K. Then :
(i) [aiJ] defines an opcrator TeL(cO(K)) if and only if it holds
(i-1) I}m @, = 0 for every ieN.
(i-2) Sup Iaul < .

i, JeN
(ii) [ocU] defines an operator TeA if and only if it holds (i-1),(i-2)

and besides l}m ozU=0 for every jeN. In such a case, the adjoint operator

T* of T is represented by the adjoint matrix [E;] of the matrix [oc”].

(4.6) Theorem.- Let A1:=(TeL(c (K)) | l}m Te1=0). Then Al is a closed
o

*-subalgebra of A without unity.
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