NON-ARCHIMEDEAN HILBERT SPACES AND ADJOINT OPERATORS J. A. Alvarez-García

Facultad de Ciencias. Universidad de Santander.(Spain)

A.M.S. Clasification (1980): 46P05

Introduction.—In this paper we introduce "n.a. Hilbert spaces" in which the norm stems from a certain hermitian sesquilinear form, what is a generalization of the Springer spaces. We study the orthogonality and characterize the Riesz-Frechet mapping range. The adjoint of an operator is defined. It allows us to introduce an operator C*-algebra that is maximal in a n.a. Hilbert space. A matricial representation is given for the C*-algebra in the space c .Essential differences respect to the usual, real or complex case, are seen.

K will denote a complete field with characteristic different from 2, not trivial valued n.a., and with an involution $\alpha \in K \to \overline{\alpha} \in K$ and E will denote a linear space over K.

- 1.- Non archimedean inner products
- (1.1) <u>Definition</u>. A non a chimedean inner product in E is a hermitian and anisotropic sesquilinear form $\varphi(x,y) \equiv (x,y)$ defined in E such that the mapping $\|.\|:x\in E \longrightarrow \|x\|:=|(x,x)|^{1/2}\in \mathbb{R}$ is a non-archimedean norm. If besides $(E,\|.\|)$ is complete, then E is said to be a n.a. Hilbert space.
- (1.2) <u>Theorem</u>.- If the involution of K is isometric and |2|=1, then every hermitian and anisotropic sesquilinear form in E is a n.a. inner product that verifies $|(x,y)| \le ||x|| ||y|| \quad \forall x,y \in E$.
- (1.3) <u>Definition.</u>— Given a vector system $S=\{e_i \mid i \in I\} \subset E-\{0\}$, we shall say that S is a N-orthogonal system (NOS) if for all $x = \sum\limits_{k=1}^n \alpha_k e_i$ with $\alpha_k \in K$, $i_k \in I$, it holds $\|x\| = \max\limits_{1 \le k \le n} \|\alpha_k e_i\|$. We shall say that S is an E-orthogonal system (EOS) if $(e_1,e_2)=0$ for all $i \ne j$.
- (1.4) Theorem. Let E be a n.a. inner product space over K such that |2|=1. Then every EOS is a NOS.

The following terminology was introduced in [2]: A subspace M of a n.a. inner product space E over K is called orthocomplemented if M \odot M^{\perp} = E. If M^{\perp} is a normic complement of M too, M is said well complemented.

(1.6) $\underline{Definition}.-$ We shall call Riesz-Frechet dual of the space E to the range $E_{\mbox{\scriptsize RF}}$ of h.

- (1.8) Theorem.- Let E be a n.a. inner product space over K , and let $f \in E' \{0\}$. The following conditions are equivalent:
 - (i) $N(f)^{\perp} \neq \{0\}$
 - (ii) f∈E_{RF}
 - If besides |2|=1, the following is equivalent too:
 - (iii) N(f) is orthocomplemented (then, well complemented).
- 2.- The n.a. Hilbert space of sequences
- (2.1) Proposition. Let K be with an isometric involution, and |2|=1. Then

(,):
$$(a,b)\equiv((\alpha_n),(\beta_m))\in c_o(K)\times c_o(K)\longrightarrow (a,b):=\sum\limits_{n=1}^\infty\alpha_n\overline{\beta}_n\in K$$

is a hermitian and non-degenerate sesquilinear form. If (,) is anisotropic, then c(K) is a n.a. Hilbert space. That situation occurs if K is one of the formal series fields K, , i=1,2,3 of [1].

- (2.2) <u>Theorem</u> (of Riesz-Frechet for $c_o(K)$).— Let K be with a continuous (in particular if isometric) involution, such that $c_o(K)$ is a n.a. Hilbert space, and $f \in c_o(K)$. Then, the following properties are equivalent:
 - (i) $f \in c_o(K)_{RF}$
 - (ii) $\lim_{n} f(e) = 0$, where $e = (\delta_{nk} | k \in \mathbb{N})$; i.e. $(f(e)) \in c(K)$.

Furthermore, $c_0(K)_{RF}$ is a proper subspace of $c_0(K)'=1^{\infty}$.

3.- n.a. C*-algebras of operators

Along this section, E, F and G will be n.a. Hilbert spaces over K; h_X will denote the Riesz-Frechet mapping of the n.a. Hilbert space X. We shall also suppose that |2|=1 (in K).

(3.1) Adjoint operators

Let us consider the subset $\mathscr{L}_{o}(E,F):=\{T\in Op(E,F)\mid D(T)^{\perp}=\{0\}\}$, and the mapping $*:T\in\mathscr{L}_{o}(E,F)\longrightarrow T^*\in Op(E,F)$.

- (3.2) <u>Proposition</u>. Let $T \in \mathcal{L}_{0}(E,F)$. Then :
 - (i) $D(T^*) = (T' \circ h_F)^{-1}(E_{pF})$
 - (ii) $T^*=h_E^{-1}\circ T'\circ h_F|_{D(T^*)}$.
- (3.4) Theorem.- Let $A:=\{T\in L(E) \mid T'(E_{pF})\subset E_{pF}\}$. Then:
 - (i) $A = \{T \in L(E) \mid D(T^*) = E\}$
 - (ii) A is a non-commutative unitary Banach algebra over K.
 - (iii) The map * is an involution on A.
 - (iv) A is a n.a. C*-algebra.
- (v) A contains the orthogonal projections of the well complemented subspaces of \boldsymbol{E} .

4.- The C*-algebra of operators on the n.a. Hilbert space c (K)

Let K be now with an isometric involution, where |2|=1 and such that $c_o(K)$ is a n.a. Hilbert space with the inner product of the section 2.

(4.1) Lemma.- Let E be a n.a. inner product space over K , and $T \in L(E)$. The mapping

$$\varphi_{\mathtt{T}}: (x,y) \in \mathbb{E} \times \mathbb{E} \longrightarrow \varphi_{\mathtt{T}}(x,y) := (\mathsf{T}x,y) \in \mathsf{K}$$

is a bounded sesquilinear form in E such that $~\|\varphi_{_{\rm T}}\|~=~\|{\rm T}\|.$

- (4.2) <u>Lemma.</u> Let $E=c_o(K)$ and $\varphi:E\times E \to K$ a bounded sesquilinear form. Then there exists an operator $T\in L(E)$ such that $\varphi=\varphi_T$, where φ_T is the sesquilinear form of the lemma (4.1), if and only if for all $x\in E$ is $\lim_{t\to\infty} \varphi(x,e_t)=0$. In such a case, the operator T is unique.
- (4.3) Theorem. Let $T \in L(c_o(K))$ and $A = \{T \in L(c_o) \mid T^* \in L(c_o)\}$. Then $T \in A$ if and only if for all $y \in c_o(K)$, $\lim_{K \to \infty} (Te_i, y) = 0$. Besides $A \neq L(c_o(K))$.
- (4.4) <u>Matricial representation of $T \in L(c_0(K))$ </u>

Given $T \in L(c_o(K))$, T determines and is determinated by the infinite matrix $[\alpha_{ij}]$ according to the equation $Tx = x[\alpha_{ij}]$, where the i-th row of $[\alpha_{ij}]$ is the coordinate vector of Te_i .

- (4.5) Theorem. Let $[\alpha]$ be an infinite matrix of elements in K. Then:
 - (i) $[\alpha_{ij}]$ defines an operator TeL(c_o(K)) if and only if it holds (i-1) $\lim_{j} \alpha_{ij} = 0$ for every ieN.

(i-2) Sup
$$|\alpha_{ij}| < \infty$$
.

(ii) $[\alpha_{ij}]$ defines an operator $T \in A$ if and only if it holds (i-1),(i-2) and besides $\lim_{i \to \infty} \alpha_{ij} = 0$ for every $j \in N$. In such a case, the adjoint operator T^* of T is represented by the adjoint matrix $[\overline{\alpha_{ij}}]$ of the matrix $[\alpha_{ij}]$.

(4.6) Theorem. – Let $A_1 := (T \in L(c_0(K)) \mid \lim_{i \to \infty} Te_i = 0)$. Then A_1 is a closed *-subalgebra of A without unity.

REFERENCES

- [1] Alvarez García, J.A. : Involutions on non-archimedean fields and algebras. Actas XIII J. Hisp-Lusas de Mat. Valladolid (1988).
- [2] Bayod Bayod, J.M.: Productos internos en espacios normados no arquimedianos. Doctoral dissertation, Universidad de Bilbao, (1976).
- [3] Monna, A.F.: Analyse non-Archimedienne. Springer-Verlag, (1970).
- [4] Narici, L./Beckenstein, E./Bachman, G.: Functional Analysis and valuation theory. Marcel Dekker, (1971).
- [5] Rooij, A.C. Van: Nonarchimedean functional analysis. M. Dekker (1978).