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The first part of this survey [2] dealt with the properties (symmetry,
homogeneity, additivity, ...) of several concepts of orthogonality in real normed
linear spaces.

We continue the survey summarizing known results and open problems on
the relations between any two different concepts of orthogonality.

With this aim, we stari with a classification of all the concepts of
orthogonality we know, which is more suitable for our present purpose than the
other one considered in [2], which was less systematic.

DIFFERENT CONCEPTS OF ORTHOGONALITY

According to its greater frecuency in literature we only consider the case in
which the normed linear space E is over the real numbers.

When the norm of E is induced by an inner product the orthogonality of two
points x and y of E is equivalent to each one of the next (main or secondary)
propositions.

In the more general context of mormed linear spaces, any one of such

- propositions is8 a DEFINITION of orthogonality between x and y:

(R) ROBERTS (1934): ||x—Ay]|=|Ix+Ayl, for every AeR.

(B) BIRKHOFF (1935): ||x||<||x+Ay]|, for every AeR.
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(C) CARLSSON (1962): kglak|lbkx+ck}’|| =0, where ak,bk,ckE[R are such that

Eabc#o, Sabl= Racl=0
K=1k k k ketk k k=1kk

Obviously C—orthogonality is not a singular concept, but a family of them.

Before and after Carlsson‘s paper [12] the following members of such family have
been considered separately:

(T) Isosceles (1945): [|x—yl|=(Ix+yl|
(P) Pythagorean (1945): [|x—yl|2=(x[|*+|lyl|?
both introduced by James [19].

(al) a—Tsosceles (1988): ||x—ay||=|lx+ay]|
(aP) a—Pythagorean (1988): ||x—ayl|2=||x]|?+a?|y]|2
both for some fixed a#0. They appear in [3] starting from a hint of [10].

(ab) (1978): ||lax+by||2+|x-+y]|*=(|ax+y]|3+(|x+by]|2
for some fixed a,be(0,1). Considered by Kapoor and Prasad [22].

(2) (1983): (1+a?)l|x-+y]|2=|lax+y][2+||x-+ay]|?
for some fixed a#1. Considered by Diminnie, Freese and Andalafte [16].

(U) UNITARY—CARLSSON: Either ||x||||y||=0 or |x||"x_|C |lyll"y

Apparently there is no general study of this family of concepts. However, as
for Carlsson’s one, some particular members of this family have been considered
separately:

(UT) U-Isogeeles (1957): Either [|x]l[lyl|=0 or [lx||"x_LL [ly||y
introduced by Singer [25, 26].

(UP) U—Pythagorean (1986): Either ||x|l|lyl|=0 or |Ix||"x_|P |lyl"'y
considered by Diminnie, Andalafte and Freese [15] and Bosznay [11].

(D) DIMINNIE (1983): sup{f(x)g(y)—f(y)g(x) : f,geS’}, where S’ denotes the unit
sphere of the topological dual of E, [14].

(A) AREA (1984): Either ||x||]ly]|=0 or they are linearly independent and such
that x, y, —x, —y divide the unit ball of their own plane (identified to R?) into four
equal areas, [1].
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As we have pointed out above, all these propositions mean the same
(orthogonality between x and y) in inner product spaces, but, in general, they do
not mean the same in normed linear spaces.

In this respect, there are many known results of the following type or of a
similar one: "if a a given orthogonality is equivalent to (or implies) another one,
then E is an inner product space”. But there are also many unsolved problems
concerning relations (equivalence or implication) between any two given
orthogonalities. As was to be expected, results are, in general, easier in case of
equivalence than in case of implication.

In what follows we shall give an ordered account of known results and open
problems on this topic.

Since Carlsson and Unitary—Carlsson are not simple orthogonality relations,
but families of them, we consider firstly relations between any two of the main
concepts (Roberts, Birkhoff, Carlsson, Unitary—Carlsson, Diminnie and Area) and
then, in a third part of this survey, we shall deal with relations of particular
Carlsson and U—Carlsson between themselves and with other orthogonalities,
provided that such relations are-not covered by a general result.

EQUIVALENCE STATEMENTS FOR MAIN ORTHOGONALITIES

ROBERTS AND OTHERS (B, C, U, D, A): It is known that every
orthogonality, excepting Roberts, is existent (i.e. such that Vx,yeE, JacR:
xiax+y) [21, 12, 14, 1]. However, R—orthogonality is existing only in inner
_product spaces [19]. Therefore:

R—orthogonality is equivalent t0 any other orthogonality if and only if E is
an inner product space.

CARLSSON AND OTHERS (B, U, D, A): It is obvious that B, D, and A
orthogonalities are homogeneous (i.e. such that AeR and x.y imply x1Ay) and
that U-orthogonality is positively homogeneous (the above property with A>0).
However, C—orthogonality is positively homogeneous only in inner product spaces
[12]. Therefore:

C—orthogonality is equivalent to any other orthogonality if and only if E is
an inner product space.
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BIRKHOFF AND OTHERS (U, D, A):

(D, A): It is obvious that D and A orthogonalities are symmetric (i.e. such
that x.1y implies yix). However, B—orthogonality is symmetric only in inner
product spaces of dimension > 3 [9, 20, 21], or in 2—dimensjonal spaces that are
endowed with a Radon—norm [13]. (Radon—norms were called mixed—norms in
[2], but in the light of Gruber‘s paper [18], we think this name is better).
Therefore:

Let dim E > 3. B—orthogonality is equivalent to D or A orthogonality if and
only if E ig an inner product space. :

The case dim E=2 requires new arguments:

(D): It is not difficult to see that two linearly independent points x and y
are D—orthogonal if and only if ||x||t and ||y||-t determine a parallelogram whose
area is a quarter of the minimum area parallelogram circumscribed about the unit
sphere of their own plane (identified to R?).

From the above geometrical interpretation of D—orthogonality it follows
that: ‘
Let dim E=2, B—orthogonality i3 equivalent to D—orthogonality if and only
if E is en ith n-—norm. '

(A): Invoking arguments of [7, 23] it is stated in [1] that:

Let dim E=2. B—orthogonality i i 0 A—orthogonality i onl
ifEi inner pr

In short,we have seen that

BsD iff B is gymmetric; BsA iff E ig an inner product space.

(U): We do not know any general answer for the equivalence between B and
U orthogonalities.

In constrast, there are a lot of answers for the relation between B and
particular U—orthogonalities which will be considered in the third part of this
survey.

DIMINNIE AND OTHERS (U, A):

(A): It is easy to see that A—orthogonality is unique (i.e. such that if x#0,
then x_|A ax+y for only one o€R) and it is known that if D—orthogonality is
unique then it agrees with B—orthogonality [14]. Therefore (see the above item):
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D—orthogonality is equivalent to A—orthogonality if and only if F is an inner
product space.

(U): We do not know any general answer for the equivalence between D and
U orthogonalities. However, some partial answers will be given in Part III of this
survey.

AREA AND THE OTHER ONE (U): It is known that A, UI and UP arg
equivalent in the space R? endowed with a norm whose spheres are, for example,
regular octogons [3]. Therefore it is8 not true that equivalence between A and U
characterizes inner product spaces.

~ The above counter—example is given in a 2—dimensional space and it is
relative to some symmetric U—orthogonalities. Thus, at least, the problems for
dim E> 3 and for non—symmetric U—orthogonalities remain open.

IMPLICATIONS STATEMENTS FOR MAIN ORTHOGONALITIES

OTHER (B, C, U, D, A) IMPLIES ROBERTS: The same as in the equi—
valence case, we have that:

If xigtin hogonali ny of the other ones) implies R—orthogonalit
hen is existent and, therefore, E is an inner product space.

ROBERTS IMPLIES OTHER (B, C, U, D, A): There are spaces in which
R-orthogonality is strongly-non—existent (i.e. such that x_|Ry implies
[Ixlllly|=0) [19]. For these non inner product spaces it is obvious that
R—-orthogonality implies any other orthogonality.

Furthermore, it is easy to see that, in every case, R—orthogonality implies
B, I, UI and A orthogonalities, among others.

OTHER (B, U, D, A) IMPLIES CARLSSON: We know that B, D, and A
are homogeneous orthogonalities and that U is positively homogeneous. On the
other hand, it is stated in [12], by a very involved proof, that C—orthogonality is
~ (positively) homogeneous only in inner product spaces.

However, it is not obvious that C—orthogonality is (positively) homogeneous
when it is implied by a (positively) homogeneous orthogonality, even though such
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orthogonality is, as the present ones, existent too.

Following an indirect way, we think that either B, U, D or ‘A imply
C—orthogonality only in inner product spaces, because we conjecture that E is an
inner product space when the weaker homogeneity condition that for any x€E
there exists some yeE\{0} such that x_]C My, for every AeR, holds.

CARLSSON IMPLIES OTHER (B, U, D, A):

{A): Since A—orthogonality is homogeneous and unique, the only possibility
for C implies A is that C—orthogonality be homogeneous. Therefore:
rthogonality implies A—orthogonality if and only if E is an innmer
product space. :

(B, U, D): The last arguments would be valid to obtain analogous
conclusions if the orthogonalities under comsideration were be unique. But
B-orthogonality is unique to the left (right) only in rotund (smooth) spaces [21],
D-orthogonality is unique either in inner product spaces of dimension > 3 or in
2—dimensional spaces that are endowed with a Radon—norm [14, 5] and some
U-orthogonalities are unique (for example, UI) but other ones are not unique (for
example, UP).

From these remarks some consequences can be obtained:

implies B—orthogonality in a r r_smooth e E if
and only if E is an inner product space.
hogonality impli I—orthogonality i nly if E i an inner
product space.

But we do not know more general results, whereas the second one properly

belongs to the third part of this survey.

OTHER (U, D, A) IMPLIES BIRKHOFF OR CONVERSELY:

(D, A): It follows from the geometrical interpretation of D—orthogonality
mentioned in the equivalence case, that if D implies B or conversely, then both
are equivalent.

On the other hand, it is proved in [1] that the same is true for B and A.

Therefore, what we have already said for the case of "equivalence" remains
valid for "implication" (i.e., B & D iff B is symmetric, B s A iff E is an inner
product space).
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(U): As we have said in the equivalence case we do not know any general
answer for the implication between B and U orthogonalities, but there are a lot of
partial answers to be considered in Part III of this survey.

OTHER (U, A) IMPLIES DIMINNIE OR CONVERSELY:

(U): All the more reason than in equivalence statements, we do not know
any general answer to this question. '

(A):I D implies A then D is unique and, therefore, equivalent to
B—orthogonality [5]. Thus, B implies A and we have that: "

D-orthogonality implies A-orthogonality if and only if E is an inner

product space.
Conversely, if A implies D and D is unique, also follows the above

conclusion. However, we do not know any more general answer.

OTHER (U) IMPLIES AREA OR CONVERSELY:

We refer to that said for the case of the equivalence.
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