ON THE INDEX OF WEAKLY FREDHOLM OPERATORS

Manuel Gonzalez

Departamento de Matematicas, Universidad de Cantabria, Santander, España.

A.M.S. Classification (1980): 47A53.

A bounded linear operator $T:X\longrightarrow Y$ between normed spaces is called <u>weakly Fredholm</u> if its <u>kernel</u> N(T) and its <u>cokernel</u> $Y/\overline{R(T)}$ are finite-dimensional.

T is $\underline{\text{Fredholm}}$ if it is weakly Fredholm and induces an invertible operator from X/N(T) onto $\overline{R(T)}$.

For a weakly Fredholm operator T we may define its index by

 $ind(T) := dim N(T) - dim Y/\overline{R(T)}$

If $T: X \longrightarrow Y$ and $S: Y \longrightarrow Z$ are weakly Fredholm operators, following [2] we shall say that the pair (S,T) has the index property when the equality ind(ST) = ind(S) + ind(T) holds.

Much of the interest in the index lies in the fact that a pair of Fredhom operators has the index property [3; Theorem 6.5.4]. This result has been extended to operators with generalized inverses in [4].

Given a pair (S,T) of weakly Fredholm operators, ST is weakly Fredholm. However we cannot assure that (S,T) has the index property [2].

In this paper we obtain a characterisation of pairs (S,T) having the index property, from which we derive the sufficient conditions given in [2] and some additional ones.

In section 2, given two (closed) subspaces $M \in X$ and $N \in Y$ such that $TM \in N$, we consider the decomposition of T into operators T_S and T_Q defined by $T_S x := Tx \cdot (x \in M)$ and $T_Q(x+M) := Tx+N \cdot (x \in X)$.

We prove that T is weakly Fredholm when T_s and T_q are so; however the equality $i(T) = i(T_s) + i(T_q)$ is not always true. We characterise the decompositions for which the equality holds.

If M is a subspace of the conjugate X^* of a normed space X, we denote by \overline{M}^{W^*} the closure of M with respect to the topology $\sigma(X^*,X)$. Moreover $M \cong N$ will mean that M and N are algebraically isomorphic.

Supported in part by DGICYT grant PB88-0417.

1. The index of a product

- 1.1 Proposition Let X, Y be normed spaces and let T^* be the conjugate operator of $T: X \longrightarrow Y$. We have
 - (a) dim $Y/\overline{R(T)} = \dim N(T^*)$.
 - (b) dim N(T) = dim $X^*/\overline{R(T^*)}^{W^*} \le \dim X^*/\overline{R(T^*)}$.
 - (c) T^* weakly Fredholm \Rightarrow T weakly Fredholm and $i(T^*) \le i(T)$.
- 1.2 Theorem. A pair (S,T) of weakly Fredholm operators has the index property if and only if

 $\dim \overline{R(T)} \cap N(S) / R(T) \cap N(S) = \dim N(T^*) \cap \overline{R(S^*)}^{W^*} / N(T^*) \cap R(S^*).$

The index property for (S,T) depends more on the relation between S and T than on the individual properties of the operators. However we can derive sufficient conditions for the index property, in terms of S and T.

- 1.3 Corollary. A pair (S,T) of weakly Fredholm operators has the index property in the following cases:
 - (a) R(T) is closed and $\overline{R(S^*)}^{W^*} = R(S^*)$.
 - (b) S is one-one and R(T) is dense.
 - (c) S is bounded below.
 - (d) T is onto.
 - (e) The space Y is reflexive and R(T), $R(S^*)$ are closed. If, in addition, X = Y and the pair commutes, then we also have
 - (f) T is one-one and R(T) is dense.
 - (g) S is Fredholm of finite ascent and descent.
- 1.4 Observation Conditions (b), (c), (d), (f) and (g) were obtained in [2] by a different method. We observe that for these conditions we have always $\dim \overline{R(T)} \cap N(S) / R(T) \cap N(S) = \dim N(T^*) \cap \overline{R(S^*)}^{W^*} / N(T^*) \cap R(S^*) = 0.$

Below we show an example of pair (S,T) which has the index property but it verifies $\dim \overline{R(T)} \cap N(S) \neq 0$.

1.5 Example Let $B \in L(\ell_2)$ given by $B(x_n) := (x_n/n)$. We have that $e := (1/n) \in \overline{R(B)} \setminus R(B)$. Then, denoting $f := e/\|e\|$, we define $A \in L(\ell_2)$ by A(x) := x - f(x)f $x \in \ell_2$. Note that $\ell_2^* = \ell_2$.

A and B are weakly Fredholm operators, and ind(A) = ind(B) = 0. Moreover ind(BA) = 1 = -ind(AB), since $N(AB) = \{0\}$, $N(BA) = N(A) \neq \{0\}$, $\overline{R(AB)} = R(A) \neq \ell_2$, $\overline{R(BA)} = \ell_2$. Then (A,B), (B,A) do not have the index property. If

$$(S,T) = \left(\begin{pmatrix} A & O \\ O & B \end{pmatrix}, \begin{pmatrix} B & O \\ O & A \end{pmatrix} \right), \text{ we have } ST = \begin{pmatrix} AB & O \\ O & BA \end{pmatrix},$$

then ind(S) = ind(T) = ind(A) + ind(B) = 0 = ind(AB) + ind(BA) = ind(ST). Hence (S,T) has the index property. However it is

 $\overline{R(T)} \cap N(S) = \overline{R(B)} \cap N(A) = N(A) \neq \{0\} = R(T) \cap N(S) = R(B) \cap N(A).$

2. Decompositions of an operator

Given $T: X \longrightarrow Y$ and subspaces $M \subset X$, $N \subset Y$ with $TM \subset N$, we can "decompose" T in two operators $T_S \in L(M,N)$, $T_Q \in L(X/M,Y/N)$ defined by $T_S m := Tm \quad (m \in M)$ and $T_Q(x+M) := Tx+M \quad (x \in X)$.

- 2.1 Proposition (a) dim $N(T) \le \dim N(T_g) + \dim N(T_g)$.
 - (b) dim $Y/\overline{R(T)} \le \dim N/\overline{R(T_s)} + \dim (Y/N)/\overline{R(T_s)}$.

If T_s and T_q are weakly Fredholm, then T is weakly Fredholm.

2.2 Example We shall show that, in general $\operatorname{ind}(T)$ does not coincide with $\operatorname{ind}(T_S)$ + $\operatorname{ind}(T_G)$. Let $X = Y = \ell_2 \oplus \ell_2$ and $M = N = \ell_2 \oplus \{0\}$.

Denoting by e_n the canonical basis of ℓ_2 we define $T \in L(\ell_2 e \ell_2)$ by $T(e_n,0) = (e_n/n,0) \quad T(0,e_{n+1}) = (0,e_n) \quad \text{for} \quad n = 1,2,3,\dots \text{ and }$

$$T(0,e_1) = \sum_{s=1}^{\infty} (1/n)(e_n,0) \in \overline{R(T_s)} \setminus R(T_s).$$

We have $i(T) = 0 \neq i(T_s) + i(T_q) = -1$.

REFERENCES

- [1] Goldberg, S. 1966 <u>Unbounded linear operators</u>. New York. McGraw-Hill.
- [2] Gonzalez, M.; Harte, R. The death of an index theorem (Submitted).
- [3] Harte, R.E. 1987 <u>Invertibility and singularity for bounded linear operators</u>. New York. Dekker.
- [4] Harte, R.E. The ghost of an index theorem. Proc. Amer. Math. Soc. (to appear).