ON THE EVALUATION MAP

ANICETO MURILLO

Departamento de Algebra Geometría y Topología. Universidad de Málaga. Ap. 59, 29080-Málaga, Spain.

1980 A.M.S. Classification 55P62.

The evaluation map of an augmented differential graded algebra (DGA) A was first defined in [2] as a natural vector map (over a field K of characteristic 0),

$$ev_A: ext_A(\mathbf{K}, A) \longrightarrow H(A).$$

which assigns to each element $[f] \in Ext_A(K, A)$ represented by a cycle $f: P \to A$ (P semifree resolution of K), the class $[f(p)] \in H(A)$ where p is a cycle in P representing 1.

The evaluation map of a pointed topological space S is, by definition, the evaluation map of the DGA $C^*(S; \mathbf{K})$.

"Having non trivial evaluation map" is a property which has geometric consequences: In fact, any pointed space T of the form $T = S \cup_f e^{n+1}$, in which the characteristic class of e^{n+1} in $H^{n+1}(T; \mathbb{K})$ is non zero (we shall refer to it as a space with a terminal cell), has non trivial evaluation map [1,prop.1.6]. Moreover, given a c-connected DGA A, " $ev_A \neq 0$ " is an intermediate property between "having a cohomology class represented by an element which annihilates A^+ " and "having a cohomology class which annihilates $H^+(A)$ ".

We use this property to obtain other interesting geometric results:

Our first goal is a characterization of 1-connected rationally elliptic spaces in terms of their evaluation map. A 1-connected space S is rationally elliptic if the vector spaces $\pi_*(S) \otimes \mathbb{Q}$ and $H^*(S; \mathbb{Q})$, are finite dimensional [1]. The homogeneous spaces are classical examples of such spaces. We prove:

THEOREM A: Let S be a 1-connected pointed space with $\pi_*(S) \otimes \mathbb{Q}$ finite dimensional. Then, the following statements are equivalentes:

- (i) $H^*(S; \mathbb{Q})$ is finite dimensional.
- (ii) evs (over Q) is different from zero.

Observe that the finiteness of the dimension of $\pi_*(S) \otimes \mathbb{Q}$ is necessary as is shown in the following,

Example: The space $\mathbb{C}P^{\infty} \vee S^n$ has infinite dimensional rational cohomology and its evaluation map is different from zero, since it has a terminal cell, .

Theorem A is a first approximation to the main result:

THEOREM B: Let $F \to E \xrightarrow{\rho} B$ be a fibration of simply connected spaces.

(i) If H*(F;Q) is finite dimensional and satisfies Poincare Duality,

 $ev_B \neq 0$ implies $ev_E \neq 0$.

(ii) if $\pi_*(\rho) \otimes \mathbb{Q}$ is surjective,

 $ev_E \neq 0$ implies $ev_F \neq 0$.

In particular, in view of Theorem A, we deduce the following,

COROLLARY: Given a fibration $F \to E \xrightarrow{\rho} B$ of simply connected spaces in which $\pi_*(F) \otimes \mathbb{Q}$ is finite dimensional and $\pi_*(\rho) \otimes \mathbb{Q}$ is surjective,

$$ev_E \neq 0$$
 implies $dim H^*(F; \mathbb{Q}) < \infty$.

REMARK: As we said before, that holds if, for example, $E = S \cup_f e^{n+1}$ has a terminal cell.

All prerequisites in Sullivan's theory of minimal models and its connection with rational homotopy theory can be found in [1], [4] and [8]. We follow the notation in [1] and [4].

References

- [1] Y. Félix y S. Halperin, Rational L-S category and its applications, Trans. Amer. Math. Soc. 273 (1982), 1-37.
- [2] Y. Félix, S. Halperin, J.C. Thomas, Gorenstein Spaces, Advances in Mathematics Vol. 71, 1 (1988),92-112.
- [3] W. Greub, S. Halperin, R. Vanstone, Connections, curvature, and cohomology, Vol. III, Academic Press, New York 1972.
- [4] S. Halperin, Lectures on minimal models, Mém. Soc. Math. Fran. 9/10 (1983).
- [5] S. Halperin, Torsion gaps for finite complexes II, Preprint.
- [6] A. Murillo, Rational fibrations in differential homological algebra, Preprint.
- [7] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, T.A.
 M.S. 129 (1970), 58-93.
- [8] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes Scien. Publ. Math. (1978), 269-331.