EXTRACTA MATHEMATICAE 5, n.3, 91-1C7 (1990)

PROPERTIES AND APPLICATIONS OF TAUBERIAN OPERATORS

Manuel Gonzilez
Departamento de Matematicas, Facultad de Ciencias, Universidad de Cantabria,
39071 Santander, Spain.

1980 Mathematics Subject Classification (1985 revision): 47B05, 47D30.

Dedicated to the memory of
José Maria Garcia Lafuente.

ABSTRACT

Tauberian operators, which appeared in reponse to a problem in
summability [GaW, KW], have found application in several situations:
factorization of operators [DFJP], preservation of isomorphic
properties of Banach spaces [N, NRI], equivalence between the
Radon-Nikodym property and the Krein-Milman property [Schl, and
generalized Fredholm operators [Ta, Y].

This paper is a survey of the main properties and applications
of tauberian operators.

0. INTRODUCTION

Tauberian operators were introduced by Kalton and Wilansky as
(continuous linear) operators on Banach spaces T: X —Y such that
™y = X, where T** is the second conjugate of T. This property is an
abstract version of a property of certain conservative matrices, considered
by Garling and Wilansky [GaW], and other authors. Moreover, the inclusion
map in the factorization theorem of [DFJP] was constructed verifying it. In
fact, it has been shown [N] that most of the results about the intermediate
space of the factorization can be derived from the fact that this inclusion

map is tauberian.
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Moreover, tauberian operators can be seen as generalized upper

semi-Fredholm operators associated with the class of reflexive spaces [Y].

In this paper. we are going to describe the main results and
applications of tauberian operators that can be found in the literature.

The paper is organized as follows:

Section 1 contains the definition and basic properties of tauberian
operators, including ‘the characterizations by the action over relatively
weakly non-compact, bounded subsets (or sequences). We also present some
results relating tauberian operators and upper semi-Fredholm operators.

In section 2 we give several examples of tauberian operators, showing
the situations in which these operators appear. They also will be used as
counterexamples in other sections of the paper.

In section 3 we consider the main reason for the interest of studying
tauberian operators, which is the preservation of isomorphic properties of
(bounded subsets of) Banach spaces.

Section 4 includes two interesting characterizations of tauberian
operators. One of them in terms of perturbations by compact operators, and
the other by the action over closed convex bounded subsets. We give also a
construction of an injective tauberian operator j : CZ(X) —> X  beginning
from an injective tauberian operator i: XxX — X , and we show some
applications of the characterizations.

Finally, in section 5, we consider briefly a dual class, the
cotauberian operators, and other classes with analogous properties to that
of tauberian and cotauberian operators. Also we show other situations in

which definitions of tauberian operators have been considered.

Notations:

X, Y, Z will denote Banach spaces, Bx := {xeX : lixli=l} the unit ball
of X, X* the dual space of X, and L(X,Y) the class of all (continuous
linear) operators acting from X into Y. Given T € L(X,Y), we shall
denote by R(T) and N(T) the range and the kernel of T, T* € L(Y*X*)
will be the conjugate operator of T. Finally, we shall say that T s
uppen oemi-Fnedholm if R(T) is closed and N(T) is finite dimensional.

-
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1. DEFINITION AND FIRST PROPERTIES.

In this section we include the basic properties of tauberian operators,
as can be found in [KW], and other results obtained in [GOll. Also we give
the characterization of these operators by its action over relatively weakly
non-compact subsets, and show the relation between tauberian operators and

upper semi-Fredholm operators.
1.1 Definition An operator T : X — Y is taubenian if Ty = X.

Clearly T:X—0Y is tauberian if and only if the associated
operator Tq 1 X**/X —> Y**/Y given by
Tq(F+X) 1= T**F+Y
is injective [Y].
Note also that the weakly campact operators are defined by an exactly
opposite property: T**ly = x*x.

1.2 Proposition [KW] Given an operator T : X —> Y we have
(a) T tauberian = N(T**) ¢ X = N(T) reflexive.
For range closed operators the converse implications are true.

(b) T tauberian and K : X —> Y weakly compact = T+K tauberian.
The following result is an immediate consequence of the definition.

1.3 Proposition [KW] For an operator T : X —> Y the following assertions
are equivalent:

(a) T is tauberian.
(b) TBx is closed and N(T**) c X.

(c) T(BX) c R(T) and N(T**) c X.
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Using the Eberlein-Smulian theorem we can prove the following theorem.’

1.4 Theorem [KW] An operator T : X —> Y is tauberian if and only if for
every bounded subset A < X such that TA is relatively (weakly) compact

we have that A is relatively weakly compact.

Observation The above result shows that tauberian operators preserve the
relative weak non-compactness of bounded sets. These operators also preserve
many other isomorphic properties of subsets or spaces. This topic, which has

been systematically studied in [N], will be treated in section 3.

It follows also from the Eberlein-Smulian theorem that we can write the

above characterization in terms of sequences.

1.5 Theorem An operator T : X —> Y is tauberian if and only if for every
bounded sequence (xn) c X such that (Txn) is (weakly) convergent we have

that (xn) has a weakly convergent subsequence.
From this theorem we derive the following algebraic characterization.

1.6 Corollary [GO3] An operator T : X —» Y is tauberian if and only if
given Z and A : Z —> X, TA weakly compact implies A weakly compact.

Proof. We will give an easier proof than that in [GO3].

Suppose T is tauberian. If TA is weakly cdmpact, then we have
(TA* 'y = ax*7're¥7ly = A%*7'X = 7% ; hence A is weakly compact.

Conversely, if T is not tauberian, then there exists a bounded
sequence (xn) in X having no weakly convergent subsequences such that
(Txn) is weakly convergent.

Now, if we consider the operator A : ll —— X defined by Ae]n = xn ,

where en denotes the unit vector basis in ﬂl , we have that TA s
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weakly compact, but A is not weakly compact, since ABZ coincides with
1
the absolutely convex, closed hull of (Aen).

Next, we present a characterization of upper semi-Fredholm operators

and very irreflexive Banach spaces in terms of tauberian operators.

1.7 Theorem [GOl] (a) T : X — Y is upper semi-Fredholm if and only if
it is tauberian and the restrictions of T to reflexive subspaces of X
are upper semi-Fredholm.

(b) A Banach space X contains no reflexive, infinite dimensional
subspaces if and only if every tauberian operator with domain in X is

upper semi-Fredholm.

Finally, we show that tauberian operators can be seen as generalized

upper semi-Fredholm operators associated with the class of reflexive spaces.

1.8 Proposition [AG, GOl, Y] Let T,S: X —Y and S:Y — Z be
operators. Then we have

(a) S, T tauberian = ST tauberian = T tauberian.

(b) T tauberian, K weakly compact — T+K tauberian.

(c) T tauberian = N(T) reflexive.

(d) Suppose R(T) closed. Then T tauberian <« N(T) reflexive.

(e) Tauberian operators with closed range belong to the (topological)

interior of the class of all tauberian operators.

1.9 Observation [AG] In the above result we showed some properties which
are shared by tauberian and upper semi-Fredholm operators. However, there
are also properties that distinguish these two classes:

(a) T** tauberian = T tauberian, but the converse is not true.
(See example 2.C).

() { T e L(X,Y) : T tauberian } is not always open in L(X,Y).
(See éxample 2.F). '
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2. EXAMPLES

This section includes several examples that give an idea of the
situations in which tauberian operators appear. Also they will be used as

counterexamples in other sections.

(A) Isomorphisms (more generally, upper semi-Fredholm operators) are

trivial examples of tauberian operators.

(B) The main source of non-trivial examples of tauberian operators is

the well-known factorization of operators introduced in [DFJP].

Given an operator T : X —> Y, a canonical construction provides us
with a Banach space Z and operators A : X — Z and j: Z — Y in
such a form that T = jA.

j is a tauberian operator [DFJP].

Moreover, all the conjugates of even order j(zn) of j are tauberian

operators [AG]. Next example shows that this is not true for arbitrary

tauberian operators.

(C) There exists a Banach space Z and a tauberian operator
T: Z — Z such that T** s not tauberian [AG].

The idea of the construction of this example is as follows:

Recall that T : X — Y is tauberian if and only if the associated

operator 'I‘q : X*/X — Y**/Y s injective [Y].
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Using a construction due to Bellenot [Bell] we construct an space Z
such that Z**/Z =~ tl. Next we construct an operator T : Z — Z such
that Tq can be identified with A : tl — ll given by A(xn) = (xn/n),
and (T“”“)q can be identified with A**.

Clearly T is tauberian, since A is injective, and T** is not

tauberian, since A** is not injective.

(D) Let E, F be an interpolation pair of Banach spaces, 1<{p<w, and
0<e<l. Then the injection of the real interpolation space (l:'.,l-')9 p into

E+F is a tauberian operator [Bea, II.2.Prop. 1].

(E) Let X be a Banach space, and let ¢ be a Young function such
th'at ¢ and its conjugate verify the Az-condition. Then the natural
inclusion of the Orlicz space of vector valued functions L ¢(X) into Ll(X)
is tauberian [BoFi].

This result was applied in [Bo] to study the (V*) sets in L ¢(X) by

means of the properties of the (V*) sets in Lx(X)'

(F) Let X be a non-reflexive Banach space. The operator
T: ZZ(X) — lz(X)
defined by T(xn) = (xn/n) is a tauberian operator.
However, the operators '1'k : lz(X) — lz(X) defined by
Tk(xn) 1= (xl,xz/z,...,xk/k,0,0,...)

are not tauberian, since its kernel is not reflexive, and lIT—TkII = 1/k.



In general, given a bounded sequence Sn : Xn —> Yn of tauberian

operators, the operator

T:(x)elX)— (Sx)elY)
n n nn n

is tauberian.

(G) Let J be the James quasireflexive space, as defined for example
in [LT; 1.d.2]. We have
Ji={(a)ec /M@l <o}
n o nJ
where

m-1 NG
Il(an)llJ 1= sup { [ Z(ap- ap )] : meN, P, < P, ... < P }
1=1 i 141

The natural inclusion of J into c¢ is a tauberian operator.
o

This is a direct consequence of the fact that J** can be expressed as
the direct sum of J and the subspace generated by the sequence (1,1,1,...),

which does not belong to c.

3. PRESERVATION OF ISOMORPHIC PROPERTIES

A useful tool in the isomorphic theory of Banach spaces is the study of
operators which are less restrictive than isomorphisms but yet preserve some
of the space (or subset) isomorphic properties. This tool has been developed
quite recently.

In 1974 Davis et al. [DFJP] developed a construction technique in
which, for a bounded subset W of a Banach space X, a new Banach space Y
and an operator J : Y — X are constructed. This was used to show that
every weakly compact operator factors through a reflexive space, and has
also been used to construct many counterexamples.

One reason this construction works is that the operator J is not an

isomorphism, but preserves many properties including the relative weak
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compactness. In [KW], Kalton and Wilansky isolated this type of operator and
defined it to be tauberian. :

In this section we will review the properties preserved by tauberian
operators. For a systematic study of this topic we refer to [N], where other

classes, like semiembeddings, G -embeddings, ... are considered.

3
First we recall some definitions.

3.1 Definition Let X be a Banach space.

X is quasai-neflexire if dim X**/X < o.

X is osomewhat neflexinse if every infinite dimensional subspace of X
contains an infinite dimensional reflexive subspace.

X has propenty (u) if for every weakly Cauchy sequence (xn) c X,

there exists a weakly unconditionally Cauchy series ¥ Y, in X such that

n
the sequence [xn - yk] is weakly null.
k=1

3.2 Theorem [N] Let X, Y be Banach spaces, and suppose that there
exists a tauberian operator T : X — Y.
If Y has one of the following properties, then X has the same

property:
(a) Reflexivity, quasi-reflexivity, somewhat reflexivity.
(b) Weak sequential completeness.
(c) 81 does not embed in Y.
(d) ¢, does not embed in Y.

(e) Radon-Nikodym property.

3.3 Observation Example (G) is section 2 shows that property (u) is not
preserved by tauberian operators, since c, has property (u), but J has

not this property.

Part of the results in the above theorem can be "localized", as we show

in the following theorem.



3.4 Theorem [N] Let T: X — Y be a tauberian operator, and let A be
a bounded subset of X.

If TA has one of the following properties, then A has the same
property:

(a’) relative weak compactness: each sequence in TA has a weakly
convergent subsequence.

(b’) weak completeness: each weak Cauchy sequence in TA s weakly
convergent.

(c’) weak precompactness: each sequence in TA has a weakly Cauchy
subsequence.

(d”) weak unconditional completeness: each weakly unconditionally

Cauchy series in TA is unconditionally convergent.

The above results 3.2 and 3.4 can be applied to study the intermediate
space of the factorization of operators given in [DFJP] and the real

interpolation spaces [Beal.

4. CHARACTERIZATIONS AND APPLICATIONS

In this section we present two important characterizations of tauberian
operators and some applications.
First we give a perturbative characterization which is analogous to

another one for upper semi-Fredholm operators

4.1 Theorem [GO3] An operator T : X —> Y is tauberian if and only if
N(T+K) is reflexive for every compact operator K : X — Y.

In fact, if T is not tauberian, then we can find a non-reflexive
subspace M of X such that the restriction of T to M is nuclear with

arbitrarily small norm.
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In [Hm], Herman introduced the class of almooat weakly campact (a.w.c.)
operators as those operators which have no bounded inverses in non-reflexive
subspaces. This definition generalizes the stricly singular operators,
allowing reflexive subspaces instead of finite dimensional subspaces.
However, Herman was not able to decide if the sum of two a.w.c. operators is
also an a.w.c. operator.

The above perturbative characterization allowed to show [Gl] that the
R-strictly singular operators, defined below, are the right extension of the

strictly singular operators to the reflexive setting.

4.2 Definition [G1] An operator T : X — Y is R-atnictly singulan if
given A : Z — X we have that TA tauberian == A weakly compact.

4.3 Proposition [Gl] The class of R-strictly singular operators is an
operator ideal (in the sense of [Pi]) which contains properly the strictly

singular and the weakly compact operators.

Next we give some characterizations of tauberian operators, due to
Neidinger and Rosenthal, in terms of the action over closed convex bounded
subsets. We observe that an operator is upper semi-Fredholm if and only if

it takes closed bounded sets into closed sets.

4.4 Theorem [NR] For a non-zero operator T : X — Y the following

properties are equivalent:
(a) T is tauberian.
(b) For all closed convex bounded subsets K of X, TK is closed.
(c) For every closed subspace M of X, TBM is closed.

(d) For every closed subspace M of X, TB, < R(T).
4.5 Observation A linear functional on a non-reflexive space X is not
tauberian. Thus (b) in the above theorem tells us that for every f € X* we
can construct a closed subspace M of X such that f (BM) is not closed;

i.e., the restriction f IM does not attain its norm.



102

a

This result complements James’ characterization: If (and only if ) the
space X is non-reflexive, then there exists an f € X* which does not
attain its norm on B_. In fact the proof in [NR] uses the full generality

X
of that result.

We saw in section 3 (example F) that the class of tauberian operators
is not open. This is a shortcoming from the point of view of perturbation
theory, but it allows the following result, which is very interesting from
the point of view of the preservation of isomorphic properties.

This result was proved in [Sch] for injective operators taking bounded,
closed convex subsets into closed sets (cfr. (b) in the above theorem). We

give here a more elementary proof.

4.6 Proposition [Sch] Given an injective tauberian operator i XxX — X

we can construct an injective tauberian operator j : ZZ(X) — X.

Proof. We may assume r := llill <1, and i(x,y) := u(x) + v(y), with
u v: X — X, llull, livii =r.

Then, for a finitely supported sequence (xl,xz,...,xn,0,0,...) € ZZ(X)
we define j(xk) recursively by

j(0,0,0,...) := 0; J(Xk) = 1(xl,_1(xk+l)).
We have
2 a1
J(xl,xz,...,xn,o,o,...) =Y v ux,.
1=1
Clearly j is linear. Also we have
n N n 21 172 n 2 172
ll,j(xk)ll = Lrixlhs= [ rr ] [ L ix ] .
i=1 i=1 i=1

Hence j is continuous and can be extended to all the space @z(X).
Since i is injective, and

j(xk) = i(xl.j(xkﬂ)) for every (xk) € ZZ(X)
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it follows that j is injective:

J(xk) =0=x = o, J(Xk’) =0= X, = o, J(X‘“z) =0= ...

1
Moreover, since we have the same relation for the second conjugates
i = j** e L
J (zk) i (zl,J (zpl)) for every (zk) elZ(X )

and i is tauberian, we have that j is tauberian:

T Lid H 2 R 2]
J (zk)eX=>zleX v J (Zk+l)EX=$ZZEX,J (zk+2)eX=—>...

Using the construction in the above proposition, Schachermayer proved
the equivalence between the Radon-Nikodym property (RNP) and the

Krein-Milman property (KMP) for a certain class of Banach spaces.

4.7 Theorem [Sch] Let X be a Banéch space, and suppose that there exists
an injective tauberian operator i : XxX — X.

X has the RNP if and only if it has the KMP.

5 EXTENSIONS AND GENERALIZATIONS

We describe briefly certain classes of operators related to tauberian

operators which have been considered in the literature.

Cotauberian operators

An operator T : X —> Y is said to be cataubenian if its conjugate

T* is tauberian.
Considering the associated operator Tq D X* /X —— YH*Y, we have

that T is cotauberian if and only if the range of Tq is dense.

The properties of cotauberian are dual than that of tauberian operators

(see [G1l, GO2, GO3, Ta, Y]). As an example we give the following result:
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5.2 Theorem [GO3] For an operator T : X —> Y the following properties

are equivalent:
(a) T is cotauberian.
(b) For every compact operator K : X — Y, Y/R(T+K) is reflexive.

(c) Given B € L(Y,Z), BT weakly compact = BT is weakly compact.

Sequential” semigroups

The operator ideals of compact, weakly compact, Rosenthal, completely
continuous and weakly completely continuous operators can be characterized
by means of sequences [GOl] (see also [Pil).

In [GOl, GO2, GO3] there were introduced and studied two semigroups
asociated to each of the above ‘mentioned operator ideals. For the weakly
compact operators we have that the semigroups are the classes of tauberian
and cotauberian operators, respectively.

All these semigroups have properties formally analogous to that of
tauberian operators, and they verify the same relations of inclusion that
the associated operator ideals.

One of the semigroups associated to the Rosenthal operators has been
studied also in [MaS] (operators preserving mere weakly Cauchy sequences)

and in [Hn] (semitauberian operators).

"Algebraic" semigroups

Given an operator ideal U, it is possible to introduce two semigroups
SU, and SU_ in the following way [GI]:

SU+(X,Y) := { TeL(X,Y) : AeL(Z,X), TA€U =» AeU }
SU_(X,Y) := { TeL(X,Y) : BeL(Y,Z), BTeU » BeU }
For U the weakly compact operators, we obtain the tauberian and

cotauberian operators, respectively.
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"Metric" semigroups

Extending certain characterizations of upper and lower semi-Fredholm
operators, there have been introduced in [GM, M] generalized semi-Fredholm
operators associated to an space ideal by means of suitable operator
quantities related with the norm.

The semigroups associated to the space ideal of reflexive spaces are
contained in the <classes of tauberian and cotauberian operators,
respectively. In general, these semigroups are smaller than the "algebraic"

ones.

"Ideal variation" semigroups

In [AsT] it has been introduced a semigroup of operators, included in
the class of tauberian operators, by means of the weak measure of
non-compactness. This procedure can be extended to obtain a semigroup

associated to any operator ideal, using the ideal variation of [As].

Unbounded tauberian operators

In [Crl, Cr2] the definition of tauberian operator is extended to the
case of linear (not necessarily continuous) operators acting between normed

spaces. Part of the results of [KW] are extended to this situation.

Non-archimedian tauberian operators

In [MmPe] the definition of tauberian operator is analyzed in the
context of continuous operators in non-archimedian Banach spaces. It is
shown (with some restrictions) that the class of tauberian operators

coincides with the class of upper semi-Fredholm operators.
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