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Baer invariants of groups have been studied for long, but Fréhlich [5] was who,
considering them in algebras, gave their first homological treatment. Their utility was shown
in [8], [6] and [3], where they were considered in various § —group structures.

On the other hand, the notion of crossed module, though it arise naturally in topology
[12], acquired relevancy when it played a decisive role in the interpretation of higher
cohomology -of groups. Since then, crossed modules were studied, as an algebraic object, in
various structures. So was done for free and projective crossed modules in [10] and for
coproducts in [1].

Since the category of (pre)crossed modules is not an algebraic category (on &%/), it
seems interesting to ask if methods of [5] and [6] on Baer invariants can be applied to
(pre)crossed modules. A particular instance of this question was treated in [4], where the
"variety" of crossed modules, into the category of G —precrossed modules, was considered.
Also, in [9] the actor and the centre of a crossed module were constructed. This fact suggests
the application of the mentioned methods to the variety of abelian crossed modules.

The purpose of this paper is to stablish a theory of Baer invariants, associated to
certain types of varieties of (pre)crossed modules, and to obtain a five term exact sequence
and ’the basic theorem’ of Stallings in this setting. Our method; which extends results of [4]
and aspects of [9], gives a systematic treatment for several cases.

The category of precrossed modules, #e#, is a Burgin category [2]. Also it is a
(co)complete category, has free objects with respect to the forgetful functor, U, to the
category of maps of o/ and they are & —projective (& being the class of U—split
surjections of ¥e#). Proofs of these facts are routine. Consider the subcategory, #z#-G, of
precrossed G —modules over a group G. The arguments used here for ¥e# can be easily
adequated to the subcategory #e#-G (which has not a zero object!), & being now the class
of all surjections. As a consequence, following [5] and [6], if # is a variety of He#-G or
#e#, then the ( & —)Baer invariants, associated to ¥ can be defined in the way

A¥V(X) = (RnV(F))/ Vi(R,F), DEV(C) = V(F)/ \\(R,F),
R>—F— X beiﬁg an & —projective presentationl in Ye#-Gor Yo

THEOREM 1. If 7 is any vaeriety of $e#-G or Ye# and X' >— X—- X" is an
& — ezact sequence, then we have a commutative diagram with ezact rows:
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Ker zlJGV(a) >— D¥V(X) -2+ DEV (X”)
'y B
X >>— X —_— X’
Therefore, there ezists an ezact and natural sequence
A¥V(X) — AP V(X") — X' [Imy— X[ V(X) — X" [ V(X").
Proof 1t is a simple translation of the proof of [6, theorem 9], having into account the

properties of %2#, mentioned above. In the case of ¥2#-G, an obvious adequacy of these
proof gives the result. 1

The five term exact sequence, in the usual form, can be obtained for those varieties of
#a# for which Imy= V;(C’—G’,C— G). It is enough that V; preserves surjections (this
fact has been proved in [5, theorem 2.1] for varieties of Q—groups). In our case it is a
consequence of explicit computations of the functor V;, which we obtain for several types of
. varieties in Ye# (theorem 2, below). These are, first, the variety, #%e#, of crossed
modules. Also, for a variety, ¥, of ordinary groups, consider the following variety of Peq#

¥,:={(C— G) e 7# : the action of G on C is trivial }

So 64, s the variety of abelian crossed modules of exponent ¢ (¢=0,1,...).
Let (C—G)eg2#, C'<C and G'< G. Let us denote C'G’ the subgroup of C
generated by: ¢’9¢’-1, ¢’e C’, g’ G’, and let <,> denote the Peiffer commutator.

THEOREM 2. Let C'— G’ be a normal subobject of C—a» Ge yzz#. Then
a) For the variety €Y2# of Ye# and assuming G’ =1, we have
Vi(C'—1,0—G) = (<C',C>-<C,C'>—1).
b) For the variety %, and assuming that (C — G) € ¥§e#, we have
Vi(C'—G',C—G)=(CG-CG"-V(C',C)—[dC",G)-[8C,G)- V(G'.G)).

Proof. The functor Vi, as defined in [6] for Q—groups, is the least satisfying the
properties (i) and (ii) of [5, theorem 2.1]. Therefore, once we prove that the right members
are normal subobjects, it is enough to prove that the "property (ii) of [5, theorem 2.1]" = (p)
is verified:

a) C=<C’,C>-<C,C"> is generated by <z,y>"1<zz’,yy’>, 5,y€C, z/,y’€C’. In
fact:

<zy>l<zr,yy’> = <gy>lr<z/ > rl<a,yy’> =
Yroyl<a',yy'> ol <z,y> P2 <zy’> (%)l =
¥z (zyl <z ,yy'>yzl) - <z,y'> (195) 1 € < C",C> - < C,C'>.
Therefore C; verifies (p).

If C”—1 is a normal subobject verifying this property, let F—G be the free
precrossed G —module [10] on {c,¢’}— G and ¢,9¥: F— G such that gc=cc’, ¢c’=c’; Ye=c,
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9e’=1. Then <c,¢’> = <cc’,¢’>-<¢,1>"1 = ¢g<e,¢/>-9<c,c’>1 € C”.

b) By [5, theorem 2.1] V;(C",C) = V(C’,C) and V;(G’,G) = V(G,G). If (¢,a), (¥,0):
(D— H) — (C— G) are morphisms in €2+, coequal to (C/C'— G/ G’), then
($d1)es-¢(d9d1)-p(dod 1)1 (9a)°d = [(Yd-19d)9-pd-19d]-[(¥d1)P(yd)s] € T'G-CG".
Thus (p) is verified. , 4

If C”—G” is a normal subobject of C— G verifying (p) and c’9¢’-1 e C'G, by
considering the free crossed module on the map {¢’}—{g,d¢’}, we obtain that c’9¢’-1 € C”.
Analogously, CG’c C”. Let ¢,4%: D— C be homomorphisms of groups, coequal to C/C".
Since (C— G) € €Fe#, the morphisms (¢,09),(¢,0¢): (D— D) — (C— G) are coequal
to (C/C"— G/G’). Then V(C’,C) c C”. Analogously V(G’,G)c G”. 1

COROLLARY 3. Let V; be the functor, computed in theorem 2, corresponding to each
of the varieties considered in the following.
a) The variety ify/z#-G n f@#—c. If C¢'>— C—— C” is an ezact sequence in fe#-G,
then there ezists a five term ezact sequence
AV(C)— AV(C")— C'| Vy(C",C) — C[<C,C>—~ C" |<C",C">.
b) The variety ¥, in €Pe#. If 1—(C'—G')— (C—G)—(C"—G")—1 is an
& — ezact sequence in €Y+, then there ezists a five term ezact sequence

AEV(C— G) — ABV(C"— G") — (C'— G")| Vi(C"— G/,C— G) —>
—(C—G)] V(C—G) —m (C"— G")| V(C" — G") — 1.

Proof. Since Vi, as computed in theorem 2, preserves surjections, it follows that
Im y= V1(X’,X) in any case, analogously to [6]. §

COROLLARY 4. (Basic theorem of Stallings for crossed modules) Let f: M — Nbea
morphism in any of the categories Yo#-G or €Y2# and consider any of the varieties in
corollary 3. Assume that, in the case of €Ye#, every term of the lower V — central series
(Vi1 (M) = Vy(Vi(M),M)) of M and N is &—allowable. If f induces an isomorphism,
M|/V(M)— N[/V(N), and a surjection, AEV(M)— AEV(N), then it induces
isomorphisms, M/ Vi(M)—— N/ Vi(N), i > 1.

Proof. Having into account corollary 3 it is an easy translation of the proof given in
[11]. n

The proposition of p. 332 and theorem 1 of [4] are particular cases of our corollaries 3
and 4, respectively. The lower V —central series has been considered in [9] for the variety of
abelian crossed modules. These results also extend to the corresponding ones for ordinary
groups [11] (when a group G is considered as a crossed module G—1), since F—1 is an
& — projective crossed module if F is free.

We also have calculated, for the variety 7%, the V—centre of a crossed module:
V¥ (C—G)=(C%n{(C)—(AG)NV*G), where ¥N.AL = A4, V*G is the V—centre
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(marginal subgroup) of G, ,((C) is the g —centre, CG is the fixed group of C and G, is the
_ isotropy group. When we take the variety, .¢4,, of abelian crossed modules, this notion
coincides with the centre constructed in [9] and with the one of [7]. The same holds also for
‘the commutator, Vi, corresponding to .64,. Thus, V —nilpotency and V —solvability can be
extended to crossed modules.

Similar results are obtained for the category, %+, of (pre)crossed modules of Lie
algebras, by a routine translation. |
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