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A mathematician friend describes himself by saying that he is not a
mathematician in the sense of "one of those who proves theorems", but rather
just a "maker of examples". This survey is in that spirit since it is intended
basically to show a collection of examples. In doing so, we give an overall look at
some problems arising in the study of the structure of Fréchet spaces which may
deserve attention.

PART 1

1.1. A GENERAL PROBLEM: FRECHET SPACES AND ASSOCIATED BANACH
SPACES. Let E[7] be a locally convex space (l.c.s.), and denote by %(7) a
fundamental system (f.s.) of absolutely convex closed neighborhoods of 0. Given a
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neighborhood Ue€ %(7) with associated seminorm py, let ¢y: E— E/Kerpy
denote the quotient map. The completion of the normed space Epy=
(E/Kerpy,|-ly), where |pyzlly=py(z) shall be referred to as the associated
Banach space of U. It is thus clear that a locally convex topology 7 on FE
implies the existence of a family (Ey)yeg () of Banach spaces.

Could we reconstruct the space E[r] starting with the family (EU)UG%(1)?
The answer is no: all locally convex spaces carrying the weak topology have
associated Banach spaces isomorphic to some K®.

But this is the because we have forgotten an essential ingredient in our
picture: if V,Ue %(7), Vc U, then we have a natural linking—map '—fvu between
the associated Banach spaces which is the extension to the completion of the map
Tyy dvz = gyz. What we now have is a family (E’U)erﬂ of Banach spaces and a
family of (TVU)V’UE%(.,) of morphisms between them which has the connection
property: Tyy Tyy = Tyy- The question is posed again: Could we reconstruct the
space E[r] starting with the families (E}ﬂue%m and (TVU)V,Ue%('r)?

The answer is essentially yes.

The construction which passes from the families of spaces and maps to E[7]
is known as a projective limit. Projective limits of Banach spaces are complete,
thus we shall obtain E[7], if it is complete, or its completion if it is not.

But let us start again, this time with an arbitrary family (X;);; of Banach
spaces and a family (Tj;) of maps having the connection property (Tt Tpi=Tjq)-
Does there exist a locally convex space E[7] having a fundamental system of
neighborhoods of 0 %(7) with (X;);¢; as the family of associated Banach spaces
and (T};) as the corresponding linking maps? '

This seems to be an open problem.

In the Fréchet case, that is, when we restrict our attention to sequences of
Banach spaces and of maps, an answer is found in a result of Dubinski:

THEOREM. ([21])) Let T,:X,,,—X,, n=1.2,.. be a sequence of linear
continuous maps acting between Banach spaces, which are injective and have dense
range. Then there ezists a unique, up to isomorphisms, Fréchet space F having a
fundamental sequence of morms for which the sequence of kinking maps is
equivalent to (T,).

(Two operators T:X——Y and S:A——B are said to be equivalent if
there exist isometries I: X — A and J: Y— B such that T=J-1SI.)
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We could be a little less exigent in our demands and simply ask if, given a
fixed Banach space X, there is a locally convex space E[r] having a fundamental
system of associated Banach spaces isomorphic to X. The answer is yes, but the
method for obtaining such an E[7] is not clear:

THEOREM. ([44]) Let B be an infinite—dimensional separable Banach
space. Let E[T] be a nuclear space. Then E has a f.s. of associated Banach spaces
1sometric to B.

We see that this answer is very different in nature fromthat of Dubinski. It
is time for a definition:

DEFINITION. Let 2 be a class of Banach spaces. Then define
s(@)={lcs. E[r] such that Eye 2 for all U of some %(7)}.
Hopeless of resolution though it seems, this has to be our first problem:

PROBLEM 1. Characterize those l.c.s. in s(.8).

In practice one usually wants something more concrete, such as: Fréchet—
Montel spaces in s(cp), Fréchet—Schwartz spaces in s(L,), Fréchet spaces
having a f.s. of associated Banach spaces with the approximation property or the
Dunford—Pettis property, and, in general, Fréchet spaces having some special
property and a f.s. of associated Banach spaces of certain type. That will be our
approach. An initial step is to see what happens if we focus our attention on the
role of the linking maps instead of the associated Banach spaces.

1.2. ASSOCIATED BANACH SPACES AND GROTHENDIECK SPACE IDEALS.
Let .4 be an operator ideal, that is a subclass of the class of all continuous
operators acting between Banach spaces, which is closed under addition, and such
that composition with continuous operators gives elements of .. We assume,
moreover, that the finite—dimensional operators are contained in €. Two basic
examples are &, the finite—rank operators, and .¢, all continuous operators.

Several interesting operator ideals result from considering those operators
which transform a certain type of set into another type of set. For instance:

(#) Compact operators, those transforming bounded sets into relatively
compact sets.

(#) Weakly compact operators, those transforming bounded sets into
relatively compact sets.
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As a special case, we have those operators defined by the property of
sending sequences of one kind into sequences of another kind.

An intermission: Sequences in Fréchet spaces. A sequence (z,) in a l.c.s.
E[7] is said to be...

...Banach—Saks if it has convergent arithmetic means.

...p—Banach—Saks, 1<p <+00, if, for any continuous seminorm @, there is
a constant C(Q) such that

Q [Zl<n<~ fcn] <C(Q)NYr.
...p—summable, 1<p < +00, if, for each continuous seminorm @

Y Q(z,)? < +00.
If p =+00, we obtain the 7—null sequences.

...weakly p-summable, 1<p<+oo, if, for all z*€E[r]*, (z*z,)ed,
Equivalently, if for each continuous seminorm @ there is a constant C(Q)>0
such that

Q[Ze e ) <CQUEN, .-

This last notion is nothing else than that of a p—summable sequence when
T=0(E[r],E[r]*). When p=+00, we simply obtain the weakly null sequences.
We say that a sequence (z,) is weakly—p—convergent (resp. p—Banach— Saks
convergent) to z if (z,—z) is weakly—p—summable (resp. p—Banach— Saks).

Let K be a subset of a Fréchet space E[r]. We shall say that it is a
relatively weakly—p—compact set if any bounded sequence admits a weakly—p—
convergent sub—sequence. Notice that when p=o00 we are simply speaking about
weakly compact sets.

We now resume defining more operator ideals in Fréchet spaces:

(T,) p—Summing operators, those transforming weakly—p—summable
sequences into p—summable ones.

( %) Unconditionally converging operators, those sending weakly summable
sequences into summable sequences.

(#) Completely continuous or Dunford—Pettis operators, those sending
weakly null sequences into norm—null sequences.

(Gp) p—converging operators, those sending weakly—p—summable
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sequences into null sequences. This scale of operators ideals is intermediate
between ¥ =C; and B =Cg..

(Wp) Weakly—p—compact operators, those transforming bounded sets into
relatively weakly—p—compact sets.

A lcs. E[7] which can be defined as a projective limit of Banach spaces
with linking maps in £ is said to be an .£—space. We also say that E[7]
belongs to the Grothendieck space ideal generated by .6, and we write this E[7]
€Groth(.%).

Some of the most important classes of l.c.s., the so—called nuclear (N) and
Schwartz (S) spaces are Grothendieck space ideals (see [27] for details):
N =Groth(Il;), and S=Groth(% ). Other important classes, such as the Montel
or barrelled spaces are not (see [11] for details).

Problems involving Grothendieck space ideals are numerous:
a) Determination problems.
b) Characterizations problems.
¢) Uniqueness problems.
d) Extension problems.

Question a) is essentially: determine those classes 2 of locally convex
spaces such that, for some operator ideal £, 2 =Groth(.%); as we have already
said, Montel or barrelled Schwartz spaces do not form a Grothendieck space ideal.
This problem has been treated in [11].

Problems in b) are more difficult to fix precisely, since the word
"characterizations" has several meanings. Perhaps the most obvious is:
characterize, by means of a certain "inner" property, Groth(.£¢) for concrete
ideals £. A great deal of literature deals with nuclear (and nuclear—type) or
Schwartz spaces, and thus inner descriptions for them are well known (see [27]).
Other cases are obvious: Groth(¥) are the locally convex spaces carrying the
weak topology. The choice £ = % (approximable operators = adherence of &
in .£) has been treated in [8,9,10], and we shall give the available information in
section 2.1.

The uniqueness problem could read: when is the operator ideal .4 which
generates Groth(.#) unique? A complete solution for nuclear—type ideals has
been presented in [41]. When there is no uniquenes, the obtention of ideals &
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such that Groth(.£)=Groth( %) seems to be an open problem.

Extension problems have been considered in [34].

The problem in which we are interested is the characterization of Banach
spaces associated to .#—spaces, and therefore questions which could be
classified b).

Nuclear and Schwartz spaces form the most interesting Grothendieck space
ideals, and they are our starting point. The problem of Banach spaces associated
to nuclear spaces is completely solved by Valdivia’s result: they can be chosen
isomorphic to any separable Banach space, i.e., for any separable Banach space
X, Ncs(X). Not too much is known, however, about the structure of Banach
spaces associated to Schwartz spaces (see [2]):

S =s(subspaces of cg)
S ¢ s(subspaces of £,), for 1<p <+o0.

The smaller subclass SH of Schwartz—Hilbert spaces, i.e., spaces in
Sns(4y), has been studied in [3]. Fréchet spaces in this class are characterized by
the following embedding property: if X is a Banach space and Fe SH, then F is
a closed subspace of XN. Fréchet nuclear spaces also satisfy that property since
Fréchet spaces in s(X) are contained in XN.

The two classes are, however, different: if g €cy\Ups14,, 0, >0 for all n,
then the projective limit

defines a Schwartz—Hilbert non—nuclear space.
Conversely, a Fréchet space which belongs to s(X) for any separable
Banach space X must be nuclear; in fact we have the equation "

N=s(co)ns(f)

whose proof is based on Grothendieck’s inequality (see [27]). This raises a curious
question:

QUESTION 1. Is there a Banach space X such that
N=Sns(X)?

(Unfortunatey ¢y or £, do not serve for such an X: for example, the space (¥*),
and the space obtained from it replacing £y by co.)
Other elementary results, which we mention for the sake of completeness
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and later use, are:
Groth ( #°) = s(reflexive spaces)
(by the Davis—Figiel—-Johnson—Pelczynski factorization method), and
Groth (¥) = s(finite—dimensional spaces).

It is clear that the membership of several classes s(.Z) imposes restrictions

on the structure of the space. For instance, if p #q,
s(&)ns(4)cS

by Pitt’s lemma. Since almost everything in this area remains to be done, it is not
difficult to pose intriguing questions. We would spotlight just three:

QUESTION 2. (L. Weiss) Let o denote the strictly singular (or Kato)
operators. Characterize Fréchet spaces in Groth( ).

QUESTION 3. Let 1<p <+oo. Characterize Fréchet spaces in Groth(C,).
QUESTION 4. Let 1<p <+o0. Characterize Fréchet spaces in Groth( #,).
PART 2

A second stage in the approach to problem 1 is to consider a property (2)
suitable to be possessed by Banach spaces (such as the approximation property,
containing of ¢g, reflexivity, etc). Imagine that we can define such a property
(£) for Fréchet spaces in a reasonable form (as is the case in the aforementioned
examples).

PROBLEM 2. Are
1. E[7] has property (.2).
2. E[r] € s(Banach spaces with property (.2))
equivalent?

For instance, if 2 =reflexivity, 1 does not imply 2, while 2 implies 1.

If property (#) can be described by means of an operator ideal £ then we
find again essentially two ways in which property () can be defined in E[7]:
requiring either that the identity of E[7] be in £, if a suitable extension of ¢
is possible, or that E[7] € Groth(.%).

PROBLEM 3. Are
1. E[7] has property (.2)
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2. E[7] € s(Banach spaces with property (#))
3. E[r] €Groth(.¢)
4.id(E[r]) € £

equivalent?

Taking again our example 2P =reflexivity (/6 = %), 2 and 3 are
equivalent, and imply 1. Several possibilities are open to us for defining # in
lc.s. (see section 2.3). and the implications involving 4 will depend on that
choice.

The rest of this section 2 will be devoted to considering these problems for
the following choices of (#):

AP: The approximation property and its variants.
Py: X does not contain a copy of ¢.

P;: X does not contain a copy of 4.

DP: The Dunford—Pettis property and its variants.
Properties of extraction of sub—sequences.

THE APPROXIMATION PROPERTY. Let us consider % =aproximation
property A.P., i.e., for any 0—nbhd % and any compact set K there is a finite
rank operator T such that (id—T)(K)c %. We shall also consider the bounded
approximation property (B.A.P.), which, for a Fréchet separable space, means the
existence of a sequence (7T,) of finite rank operators pointwise convergent to the
identity. We shall denote by AP (resp. BAP) the class of Fréchet spaces having
the approximation property (resp. the bounded approximation property).

Here, there is a question posed by Schottenloher [39]: Let F be a Fréchet
space and let F; denote its dual endowed with the topology of uniform
convergence over the compact sets of F. We call F; a DFC space. The question
is:

QUESTION 5. (Schottenloher) Does every DFC space with A.P. belong to
s(BAP)?

Let us denote by ¥ the ideal of operators which are approximable in the
operator norm by finite rank operators, i.e., % (X,Y) is the adherence of
LF(X,Y)in Z(X,Y). Let us consider the Grothendieck space ideal Groth( %)
generated by G. One can easily see that NCGroth(%)cS. Nuclear spaces have,
in addition, the approximation property, as do % —spaces; there are Fréchet
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Schwartz spaces, however, without A.P. (see [26]). This suggests:
QUESTION 6. (Ramanujan) Is S +A.P.=Groth( %)?
Going back to Question 6, the following properties are equivalent [11,37]:
1) F has A.P., 2) FgeGroth( %), 3) F; has A.P.

Therefore, the question is whether a special subclass of ¥ —spaces is
contained in s(BAP). An attempt to clarify the structure of ¥ —spaces [11] led
to a formulation of this problem in full generality:

QUESTION 7. Is Groth( ) =S ns(BAP)?

To see to what extent there is an answer to this question, recall that a
Fréchet nuclear space need not have B.A.P. [22]. A Schwartz space with B.A.P.,
however, must be a % —space [8,37]. Thus, ¥ —spaces, which are intermediate
between nuclear and Schwartz spaces, should have intermediate approximation
properties. It turns out that [11]:

PROPOSITION. E€Groth( ¢) if and only if it is a Schwartz space and has a
“locally” B.A.P.

That gives an inner characterization of % —spaces. Moreover, it suggest an
extension of Benndorf’s results [1] for Schwartz spaces with B.A.P. (in turn an
extension of a result of Pelczynski [36] for Banach spaces) to ¥ —spaces. This
extension is shown to be possible by proving that [11]:

PROPOSITION. ¢ —spaces are locally complemented subspaces of spaces in
Sns(BAP).

(A subspace F of al.c.s. E[r] is said to be locally complemented if there is a f.s.
of 0—neighborhoods in E, #%(F), such that for any Ue % (E), the Banach space
Fyqp is complemented in E;.)

Following a different line, Lourengo [31] improved the quality of the super—
space by proving that:

PROPOSITION. If E is a DFC~-space with A.P., then E is a compact
projective limit of a family of Banch spaces with a monotone Schauder basis.

Although we do not know whether these results are sufficient to answer
Questions 5 or 7, they seem to be enough to solve Schottenloher’s original
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problem that lay behind Question 5 (see [32] for details).

2.1. CONTAINING OF COPIES OF ¢y. It is well known that a Banach space
X does not contain a copy of ¢y if and only if id(X)€ % or, equivalently,
id(X) € C;. We shall abreviate id(X)eC; by X€ #;. What we want to know is
whether

1. E[t] does not contain a copy of ¢
2. Elt]es( %)
3. E[t] eGroth(C))

are equivalent.

It is easy to see that 1 and 3 are equivalent: this is a standar for Banach
spaces (see [19]), and it can be extended to Fréchet spaces without further
difficulties. But perhaps the most general result is due to Diaz Madrigal (see [20]).
Recall first that a l.c.s. E[7] is said to be £—complete if sequences in ¢ (E[7])
define 7—summable series (notice that when E[r] is Fréchet then E[r] is
Y—complete if and only if E[r] € #). Then Diaz Madrigal’s result is:

PROPOSITION. Assume that E*[oc(E*E)] 1is o—complete. Then
E*[c(E*,E**)] is g—complete if and only if E*¥[B(E* E)] does not contain a
copy of ¢q.

Also, it is clear that E[r]€Groth(C;)= E[r]€ ¥;. Unfortunately, it can
be shown that E[7] € #; does not imply E[r] € Groth(C)):

COUNTEREXAMPLE. (Ko6the, Grothendieck, Valdivia) For any 1g<p<
+00, and p=0 there exists a Fréchet Montel, non—Schwartz, échelon space of
order p.

For 1<p <+o00, these are the famous échelon spaces constructed by Kéthe
and Grothendieck [30,28]. The p=0 the extension has been taken from Valdi-
via [45]. Let us consider this échelon space Ao, which is a reduced projective limit
of ¢;. Because it is Montel it cannot contain a copy of ¢y. But since Cj(cp,X) =
% (cp,X) for any Banach space X, )y cannot belong to Groth(C;) unless it is a
Schwartz space.

Thus the question arises:

QUESTION 8. Under which conditions are 2 and 3 equivalent?

We will mention here a conjecture of J.C. Diaz [17]. Recall that a l.c.s. E[7]



106 J.M.F. CASTILLO AND M. SIMOES

is said to be quasi—normable (see [23]) if for any equicontinuous subset A of E*
there is a 0—nbhd in E such that the topology induced on A by E*[3(E*,E)]
and E‘(}O coincide. The quasi—normability condition is receiving an increasing
amount of attention (see for instance [4,5,6,7,35]).

CONJECTURE. If E[7] is a quasi—normable space, then E[r]€ # if and
only if E[7]€Groth(C ).

And now let us present some arguments that support it:

2.2. CONTAINING OF COPIES OF {. Ko&the’s A, space shows that a
Fréchet space can contain no copy of ¢ and be, at the same time, a reduced
projective limit of ¢. This again provides a negative answer to problem P;.
Mifarro [33] shows that the answer to P; is positive for quasi—normable Fréchet
spaces. This was also proved by M. Lindstrom (unpublished). The basic tool to
handle the problem is Rosenthal’s ¢ theorem: a Banach space X does not
contain a copy of ¢ if and only if each bounded sequence admits a weakly
Cauchy subsequence; i.e., if the unit ball is weakly conditionally compact. There
is not too much difficulty in extending that characterization to Fréchet spaces
[18], and thus we see that a Fréchet space E[r] contains no copy of ¢, if and only
if bounded sets are weakly conditionally compact.

The second tool is the following lifting result of Mifiarro [33]:

PROPOSITION. Let E[7] be a quasi—normable Fréchet space and let L be a
closed subspace of E such that E/L is normable. Then the canonical quotient map
¢:E—E/L lifts bounded sets (i.e., if B is a bounded set in E/L, there is a
bounded set C in E such that BC ¢(C)).

This, with some messy work, shows (see [33]):

PROPOSITION. Let E[7] be a quasi—normable Fréchet space. Then E[T]
has mo copy of ¢4, if and only if it can be written as a projective limit of Banach
spaces not containing ¢;.

The difference between the cases ¢ and ¢ is that in the former we know
an equivalent formulation of the problem involving bounded sets; we do not know
anything similar for cy. Therefore it would be interesting to know how to:

QUESTION 9. (Diaz) Give a characterization of bounded sets in Banach
spaces not containing a copy of ¢.
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2.3. DUNFORD-PETTIS PROPERTIES. Introduced by Grothendieck in [24],
the Dunford—Pettis property (in short D.P.) for a Banach space X is defined by
any of the following equivalent conditions:

1. Weakly compact operators T:X—Y transform relatively weakly
compact sets into relatively compact sets.

2. Weakly compact operators T:X——Y transform weakly convergent
sequences into convergent sequences; i.e., #(X,Y)c Z(X,Y).

3. For any weakly null sequence (z,) of X and any weakly nul sequence
(zy) of X*, lim<z},z,>=0.

Typical examples of Banach spaces having D.P. are C(K) and L,(u)
spaces. No reflexive Banach space can have D.P.

For an arbitrary l.c.s. E[r], it is not clear that these properties are
equivalent. It is not even clear what has to be understood by a weakly compact
operator, since two definitions can be considered: operators transforming some
0—nhbd into a relatively weakly compact set, and operators transforming bounded
sets into relatively weakly compact sets. We will call them, respectively, weakly
compact ( #) and weakly bounded ( #B) operators. The following two
definitions of the Dunford—Pettis property have been considered in the
literature:

D.P. A lcs. E[7] is said to have the Dunford—Pettis property if weakly
bounded operators T: E[7]— Y, Y a Banach space, transform weakly compact
sets into relatively compact sets.

s—DP. A lcs. E[r] is said to have the strict Dunford—Pettis property if
weakly bounded operators T:E[r]— Y, Y a Banach space, transform weakly
convergent sequences into convergent sequences: i.e., ¥ B(E[7],Y)cC 2 (E[7],Y).

We could consider two new possible definitions, replacing "weakly bounded"
by "weakly compact". To this dazzling panorama we should add another
definition:

seq—D.P. A lcs. E[7] is said to have the sequential Dunford—Pettis
property if, given weakly null sequences (z,) and (z;) in X and X* respectively,

lim <zj,z,> = 0.

In [29], Khurana proved that if E[7] is quasi—complete then D.P.=>s—D.P.
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The converse is also true if E*[o( E*,E)] has a compact dense subset (see [29]).
This leads to an example due to Garcia and Gémez [25]:

COUNTEREXAMPLE. There is a quasi—complete l.c.s. having s—D.P. but
not D.P.

The example is the space E={;[r], where 7 is the topology of uniform
convergence over finite sequences of {; and over the set {e,},; i.e., the topology
having a subbase at zero the polars of the sets SC4, such that a) S is finite or
b) S={en}n.

The space E has the Schur property, that is id(E) € Z. Therefore it has
the seq—D.P. The space E has the strict DP but lacks the D.P., since the set
{en}n is weakly relatively compact but not 7—relatively compact.

The sequential-D.P. has been examined in [16]. There it is proved that
seq—D.P. implies strict D.P. for weakly compact operators (not for weakly
bounded as in the results of Khurana and Garcia—Godmez); also, that under an
additional condition weaker than quasi—normability, the strict D.P. in the
Mackey topology implies sequential D.P.

If we use D.P. to denote the class of Banach spaces having the Dunford—
Pettis property, we can formulate another question:

QUESTION 10. Characterize Fréchet spaces in s(DP).
The only plausible conjecture for this again comes from Diaz [17]:
CONJECTURE. Reflexive Fréchet spaces in s(DP) are Montel.

It is not hard to verify that quasi—normable reflexive Fréchet spaces in
s(DP) are Montel. There exist FM spaces not in s(DP) (see [23] for details).

2.4. EXTRACTION OF SUB-SEQUENCES. Let us consider the following
general property defined for Fréchet or locally convex space:

Any sequence of type A contains a sub—sequence of type B.

In what follows we shall take for type A: "bounded sequence". Properties of this
kind are:

Banach—Saks property: any bounded sequence admits a Banach-—Saks
sub—sequence.
p—Banach—Saks property, 1< p < +o00: any bounded sequence (z,) admits a
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p—Banach—Saks convergent sub—sequence.
W, property, 1<p <+oco: any bounded sequence admits a weakly—p—
convergent sub—sequence. Notice that, in Fréchet spaces, W is exactly

reflexivity.

If # is any of those properties, we denote by weak # the corresponding
property obtained by replacing "bounded sequence" by "weakly null sequence".
Weak properties are usually considered when the underlying space need not be
reflexive. We shall use d,, to denote the weak W, properties.

The study of this kind of properties in arbitrary l.c.s. spaces is terra
incognita. It is clear that (weak) Banach—Saks property in l.c.s. spaces depends
on the topology of E[r], and not just upon the dual pair: all l.c.s. have, in the
weak topology, the weak Banach—Saks property.

If we use BS to denote the class of Banach spaces having the Banach—Saks
property, we see that Fréchet spaces in s(BS) themselves have the BS property.
Therefore:

QUESTION 11. Do Fréchet spaces in s(BS) have the Banach—Saks
property?

We conjecture that the answer to question 10 is negative.

It is obvious that W,=>p*-Banach—Saks (and likewise for the weak
version). Something which may seem surprising is that, for Fréchet spaces, the
number

po=sup{p: E[7] has the p—Banach—Saks property}

only depends upon the dual paif. This is because it can be proved that, in Banach
spaces, p—Banach—Saks property implies W, for all r>p* (see [15]). Obviously,
a Fréchet space in Groth(W),) itself has the property W), and these properties
only depend upon the dual pair.

EXAMPLES. We write X € W, instead of X has property W,
1. For 1< p<+00, &y[0(£,,lpx)] € Wi

2. For 1<p <400, Ly[o(Ly,Lyx)] € W, where r=max{2,p*}.
3. Any co—nuclear space belongs to Wy, for all p.

4. Any Fréchet Montel space has the property Wj.

QUESTION 12. Is it true or false that £,[0(£,,4.)] € W,.?
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The implication Groth(W,)=> W, helds only for Fréchet spaces: if J is
uncountable, K’/ is a simple counterexample to the converse implication. The
space ¢y belongs to W, but not to Groth(W,). A Fréchet space Fe W; such
that Fg¢Groth(W,) can be constructed: consider the Fréchet Montel,
non—Schwartz, échelon space of order 0 constructed earlier. This space belongs to
W, (by 4) and it cannot belong to Groth (W) since #(cg,X) = F# (cp,X).

Infinite—dimensional Banach spaces cannot have the W, property. Its weak
version, the d; property, is, for a Banach space X, equivalent to the co—Banach—
Saks property and to the so—called hereditary Dunford—Pettis property: any
closed subspace of X has the Dunford—Pettis property. The situation for an
arbitrary l.c.s. is, as we have just seen, somewhat different. It is still true that if
E[7] has property d; then it has the hereditary sequential Dunford—Pettis
property, but the converse is false: the space K/, I uncountable, is a simple
counterexample.

Still another related property is the following: a sequence (z,) in a l.c.s. E
is said to be very weakly convergent (briefly, r.w.c.) if, for some sequence (A,) of
non-—zero scalars, (A,z,) converges to 0 in E. A l.c.s. E is said to have property
&’ if every sequence in E contains a r.w.c. sub—sequence. Every Fréchet space
has property ¥’ and ¢ does not have it.

The following characterization is in [42].

PROPOSITION. A lc.s. E has property %’ if and only if there is no infinite
dimensional subspace F of E with the property that dimBNF <+o00 for each
bounded set BCE; equivalently, if and only if for every subspace of E with
countable dimension contains a bounded, absorbing set.

QUESTION 13. If E has property €, is every sequence of E r.w.c.?
PART 3

3. EMBEDDING SUMS INTO PRODUCTS. A problem closely connected to
the study of the associated Banach spaces that we should like to mention is the
following: some l.c.s., such as (s) the universal nuclear space of rapidly
decreasing sequences, have the property that the sum @y (s) can be embedded
into large products (s)/. For other spaces, like the finite—dimensional spaces,
such an embedding is not possible. Thus we can pose the question of characteri-
zing those l.c.s. E[7] such that @y E[r] is a subspace of some product E[r].
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There are two 'meaningful extensions of this problem. One is to consider
embeddings into different spaces: ®y E[7]— F[n]7. Another to consider also the
uncountable embedding problem: &; E[r]— F[n]’.

When E[7] =X is a Banach space, these problems have been treated in [43]
(X a finite—dimensional Banach space, F any l.c.s.), [12] (case X =H a Hilbert
space), and [14] (X and F arbitrary Banach spaces). We shall briefly survey the
main results and techniques encountered.

It is not hard to verify that the Banach spaces associated to @y X can be
chosen isomorphic with £7(X), and that under that isomorphism the linking
maps are diagonal operators

Da__lilf(X)—'fi’(X), DU((Zn))=(UnZn)'
Therefore, via a factorization argument, the associated Banach spaces can
also be chosen isomorphic with £,(X), 0<p<+oo, or cg(X), with diagonal
linking maps:

Oy X = Lim D, (&3(X,1), o €t3(1)

(when p=+o0, we understand cg(X,)). But we can, moreover, consider the
topologies obtained by replacing £, by £y

[@X,73]:=Lim D_(£3(X,I), oely(I)

(when p=+o0, we understand cg(X,I)). All these topologies, which are
complete, coincide in the countable case, and satisfy

T0<Tb0x=Tz=T;<T;)<T;<Ti’=T, 1< pg+00,

in the uncountable case (7o and 7 denote the product and the inductive
topologies respectively). These topologies also have striking connections with
tensor products:

[QIX; Ti’] = [(pd:Tl}é‘nX7
[$1X1 T"i”] = [(pd)'rl]éex'

To extend the above lines to other 7,—topologies we define the p—topologies
7(p) on the tensor product given by the seminorms

N N -1
Tp,o [Z k=1 'kazk] = |l [Z k=1 %k wk,ank]n

£(x)
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and thus intermediate between the € and the 7 topologies on ¢;®X. We have:
[$l XI T;] = [(lotb'rp] 6'I(p) X)
[QIX; 7-1:] = [(pd:Tp] 66 X.

Going back to the embedding ;X — X7/, let us mention the result for
Hilbert spaces (see [12]):

PROPOSITION. Let H be a Hilbert space. Then
1) [®;H, T;] is a subspace of H' if and only if we have one of the following
alternatives:

a¢) I=N, dimH=+00 and cardJ>2R0,

b) p=2, dimH>d and cardJ>2¢.
2) [QIH,T;,"] is a subspace of HY if and only if I=N, dimH=+0c0 and
cardJ>2R°.

We now turn our attention to the countable embedding @&y X — X/. It can
be shown that most of the natural Banach spaces (such as L, or C(K) spaces,
vector sequence spaces, tensor products of these spaces, etc.) satisfy this
embedding. Thus the question arises whether there is any infinite—dimensional
Banach space not satisfying the countable embedding. The answer is yes: James’
space, J, does not satisfy the countable embedding (see [14] for details).

Passing to arbitrary l.c.s., it would be nice to develop the corresponding
theory for Fréchet spaces. It should be mentioned that the only non-—trivial
example of a Fréchet (non—Banach) space not satisfying the countable embedding
is given by Simdes [41], who constructs a nuclear A;(a)-space for which the
embedding ®y A;(a)— A;(a)’ is not possible.
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