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We solve the problem of the existence and uniqueness of coexistence states
for the classical predator—prey model of Lotka—Volterra with diffusion in the
scalar case.

—u" =Au—u2-buw
2y —v" = pv+cuv—v2 (1.1)
u(0) =u(1) =v(0) =v(1) =0,

where b, ¢, A, p are real numbers with >0 and ¢>0. Problem (1.1) models the
behaviour of two interacting species on (0,1). From a biological point of view the
real parameters describe, if positive, the net birth rates of the species and, if
negative, the net death rates. The functions v and v represents the population
density of both species. We are assuming logistic growth and that v preys on wu.
In references [1]—[3], [5], [6] and [8]—[15] are obtained some existence and
uniqueness results for the model (1.1) in a more general bounded domain QcR?,
with smooth enough boundary. The characterization of the values (A,x) for which
(1.1) defined in QcR™ has a coexistence state is well known (see [1], [2], [5]-[7]
and [15]). The technical tool is fixed point index. There are partial answers to the
uniqueness in [5], [8]—[10] and [13]. The result in [5] is of local nature, valid for
the scalar model whenever one of the diffusion coefficients is small enough. We
point out that the size of the diffusion coefficients for which uniqueness holds
could depend on the values of A,p, b, c. For large domains is available the
uniqueness result in [13]. In [9] was shown that the techniques introduced in [4] to
obtain uniqueness work as well when dealing with predator—prey interactions.
The uniqueness region built in [9] is a proper subset of the set of values of (\,u)
for which there are coexistence states of (1.1). Monotone schemes techniques were
used in [7] and [9] providing very restrictive results because for instance do not
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allow to p be negative, being this one of the most interesting cases to consider
from a biological point of view.

We conjecture that our restriction on the spatial dimension 7 is of technical
nature. In fact, we only need that restriction to prove Lemma 1.2 (that Lemma
proves that any coexistence state is not degenerate).

2. MAIN RESULT

For a sufficiently regular function ¢:(0,1)——R, we shall denote by A;(q)
the first eigenvalue of —(-)”+g¢- subject to homogeneus Dirichlet boundary
conditions, by variational properties of eigenvalues

M(g)= inf {f01|u’|2+f01qu2 :foluZ—_:l}
Hy(0,1)

Consequently, A;(g) is increasing and continuous. By the sake of briefness, we
shall write A; to mean A;(0). Given 7> );, we shall denote by 6, the unique
positive solution of
-0y =v0,—02 in (0,1), 6,(0) =6,(1)=0.
If y<A; then we consider 0,=0.
THEOREM 1.1. The problem (1.1) has ezactly a coezistence state, i.e. a

solution couple (u,v) componentwise positive in (0,1), if and only if, A and p
satisfy A > A1(66,), u>A1(—chy).

The proof will be decompose in several steps, specifically continuation in the
parameter b and nondegeneration of the coexistence states.

LEMMA 1.2. Let (ug,¥) be an arbitrary coezistence state of Py. Then the
variational equation around (%ug,v), given by
—u” = Au—-2%yu—bgu—bgy, —v” = pv+-clyv+cpu—27v in (0,1),
©(0) =u(1) =v(0) =v(1) =0,
has only the solution (u,v)=/(0,0).
LEMMA 1.3. Assume that A >A1(b6,), p>Ai(—cly) and that Py has an
unique coezistence state, say (%g,Vy). Then there ezists eg=€(b,c,A,u)>0 such

that for every e< €y, model Py, has an unique coezistence state, say (@(e),v(e)).
Moreover (%(0),7(0))=(%g,7) and the mapping e — (u(e),v(c)), is €L

Sketch of the proof of theorem 1.1. The necessary part is known (see [1], [2],
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[5]—[7] and [15]). We include a short proof of it. Assume that >0, ¢>0 and 2,
has a coexistence state, say (u,v). Then by applying well known results for the
logistic equation it follows that A > A;(bv) and p> Aj(—cu). On the other hand,
by standar comparison results we get u <8y and v>6,. Thus A>A;(bv)>A(04,)
and p>Ai(—cu)>A;(—chy), because —c <0, and so the inequality concerning
with the eigenvalues A and p is satisfied.

We emphasize the suficiency part.

Assume that A >A;(86,), u>X(—cb). To show that #; has an unique
coexistence state we shall apply a continuation argument by using b as a
parameter. For b=0 the system get uncoupled and so has an unique coexistence
state. Now lemma 1.3 shows that if & is small enough then 2, has an unique
coexistence state. Let b, be the supreme of such a b>0, b, >0. We claim that b,
is the unique value of b for which A >A(b,6,). By an standar continuation
argument we can continue the branch (z(b),7(b)) of coexistence states up to
b=b, It is clear that (u(b,),v(b;)) is a coexistence state because otherwise
A=X1(,0,) or p=2A;(—cly) should be satisfied. So 2} has at least a coexistence
state. Therefore from the definition of b, it follows that 2, must have at least
two coexistence states. Now lemma 1.2 and the implicit function theorem, show
that there are values b<b, for which 2, has at least two coexistence states,
which contradicts the definition of b;. 1
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