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ABSTRACT

We introduce the concept of essentially incomparable Banach spaces, and
give some examples. Then, for two essentially incomparable Banach spaces X and
Y, we prove that a complemented subspace of the product XxY is isomorphic to
the product of a complemented subspace of X and a complemented subspace of
Y. If, additionally, X and Y are isomorphic to its respective hyperplanes, then
the group of invertible operators in XxY is not connected. The results can be
applied to some classical Banach spaces.

Let X and Y be Banach spaces, and L(X,Y) the class of all (continuous
linear) operators from X to Y. Recall that Te€L(X,Y) is Fredholm if it has
finite dimensional null space N(T) and finite codimensional range R(T).

SeL(X,Y) is said to be inessential [8] if for any VeL(X,Y) we have that
Ix—VS is a Fredholm operator. We will denote

J(X,Y):={TeL(X,Y): T inessential}.

DEFINITION 1. We say that two Banach spaces X and Y are essentially
incomparable if every operator from X to Y is inessential.

PROPOSITION 1. The above definition is symmetric:
L(X,Y)=3(X,Y) & L(Y,X)=3(Y,X).

Remark1. a) If the dual spaces X*, Y* are essentially incomparable,
then so are X and Y; but the converse is not true. There exists an hereditarily
reflexive space Y whose dual is isomorphic to ¢, [3].

b) X and Y are totally incomparable [9], [7, 2.c.1] (coincomparable [6]) if
any space isomorphic to a subspace (quotient) of X and to a subspace (quotient)
of Y is finite dimensional.

1 Partially supported by DGICYT Grant PB88-0417.
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Totally incomparable (coincomparable) Banach spaces are essentially
incomparable.

Recall that an operator is completely continuous if it takes weakly compact
sets into compact sets, and a Banach space Z has the Schur property if the
identity operator in Z is completely continuous.

Z has the Dunford—Pettis property (DPP) if weakly compact operators
from Z into any Banach space are completely continuous.

C(K) spaces, L spaces, the disc algebra 4, the space of bounded analytic
functions on the disc H®, Sobolev spaces, and other classical Banach spaces have
the DPP (see [4]).

Z has the reciprocal Dunford—Pettis property (RDPP) if completely
continuous operators from Z into any Banach space are weakly compact.

C(K) spaces, as well as Banach spaces containing no copy of {;, or enjoying
the property (V) of Pelczynski [5], have the RDPP.

THEOREM 1. Y and Z are essentially incomparable in the following cases:
a) Y reflezive and Z has the DPP.
b) Y has the RDPP and Z has the Schur property.
¢) Y contains no copy of €1 and Z=1{4, H® or C(K), K o—stonian.
d) Y contains no copy of ¢y and Z= C(K).
e) Y contains no complemented copies of c¢o and Z= C([0,1]).
f) Y contains no complemented copies of £ and Z=L(u).
9) Y,Z different spaces from {{, (1<p<o0), co}-

PROPOSITION 2. If Y and Z are essentially incomparable Banach spaces,
then any Banach space isomorphic both to a complemented subspace of Y and to a
complemented subspace of Z is finite dimensional.

The analogy with the notions of totally incomparable [9] and totally
coincomparable [6] Banach spaces suggests the following conjecture.

CONJECTURE. X and Y are essentially incomparable if and only if there
exists no infinite dimensional Banach spaces isomorphic both to a complemented
subspace of X and to a complemented subspace of Y.

Note that parts ¢, d, e, f and g in Theorem 1 support the conjecture, as well
as the next theorem, proved in [1].
Recall [10] that a Banach space X is subprojective if every infinite
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dimensional subspace of X contains an infinite dimensional subspace
complemented in X; and X is superprojective if every closed infinite
codimensional subspace of X is contained in a closed infinite codimensional
subspace complemented in X.

Examples of subprojective Banach spaces are cg, £, (1<p<o0), L,[0,1]
(2<p <), the separable hereditarily —co spaces, and the dual of the original
Tsirelson space; and as examples of superprojective spaces we have /£,
(1<p<o0), L,[0,1] (1<p<2), and the original Tsirelson space (see [1]).

THEOREM. ([1]) Suppose X (or Y) is subprojective or superprojective.
Then X and Y are essentially incomparable if and only if any space isomorphic to
a complemented subspace of X and to a complemented subspace of Y is finite
dimensional.

COROLLARY 1. a) L,[0,1] (1<p<00) is essentially incomparable with Z
if and only if Z contains no complemented copies of £, or 5.
b) £, (1<p<go0) is essentially incomparable with Z if and only if Z contains no
complemented copies of L.
c) A separable hereditarily—cy space is essentially incomparable with Z if and
only if Z contains no complemented copies of cy.

THEOREM 2. Suppose Y and Z are essentially incomparable. For every
complemented subspace M of YXZ, there ezists an invertible Ue L(YXZ), and
complemented subspaces Yy of Y and Zy of Z, so that UM =YX Z.

Remark 2. 1In [11] it is proved the result of theorem 2 for spaces X and Y
such that any operator from X to Y is strictly singular, but there are essentially
incomparable Banach spaces X and Y such that neither L(X,Y) nor L(Y,X)
consist of strictly singular operators.

For example, X:={,(C[0,1]) contains no complemented copies of ¢,
(2, Prop. 2.5]; hence it is essentially incomparable with Y:=L[0,1]. However X
contains a copy of ¢; and a complemented copy of {5, and Y contains a
complemented copy of £, and a complemented copy of £;. Hence there are
non—strictly singular operators from X into Y, and from Y into X.

COROLLARY 2. Let Yy,...,Y, be pairwise essentially incomparable Banach
spaces. Any complemented subspace of Y ;X---XY, is isomorphic to a product
MiX---XM, with M; a complemented subspace of Y;.
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THEOREM 3. Suppose Y and Z are essentially incomparable Banach
spaces, both of them isomorphic to its respective hyperplanes. Then the group of all
wnvertible operators in YXZ is not connected.

Remark. For different X,Ye{l, (1<p<o0), cp}, we obtain a concrete
example of an invertible operator in XXY that cannot be connected with the
identity, as follows: ’

_[A0). yuy_,
T_[CD].XxY XXY

A(z1,2q,...)=(29,3,...), D(21,29,...)=(0,z1,29,...), C(Z1,Z9,...)=(21,0,0,...).
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