Fredholm Multipliers of Semisimple Commutative Banach Algebras

PIETRO AIENA

Dpto. di Matematica ed Applicazioni, Univ. Palermo, Via Archirafi 34, 90100 Palermo (Italy)

AMS Subject Class. (1990): 47O35

Received October 10, 1991

In some recent papers ([1], [2], [3], [4]) we have investigated some general spectral properties of a multiplier defined on a commutative semi-simple Banach algebra. In this paper we expose some aspects concerning the Fredholm theory of multipliers. The main result of [4] states that the Fredholm multipliers of certain commutative semi-simple Banach algebras may be intrinsecally characterized by replacing the so-called Calkin algebra by a quotient algebra of multipliers. We recall that a mapping $T: A \longrightarrow A$, A any commutative Banach algebra with or without a unit is said to be a multiplier if (Tx)y = x(Ty) holds for each $x,y \in A$. In the sequel we shall always suppose that A is semi-simple Banach algebra. We recall that if A is semi-simple then the ideal soc A, the socle of A, does exists ([6]). Let M(A) denote the set of all multipliers of A. M(A) is a closed commutative subalgebra of L(A), the Banach algebra of all bounded linear operators of A. Moreover M(A) is semi-simple ([13], Corollary 1.4.2). Let K(A) be the closed ideal of all compact operators on A and let us denote by $K_M(A)$ the closed ideal $M(A) \cap K(A)$ of M(A). Since M(A) is semi-simple, the socle of A does exist. Moreover for each $T \in K_M(A)$ the spectrum $\sigma_{M(A)}(T) = \sigma(T)$ has 0 as unique accumulation point, so $K_{M}(A)$ is an inessential ideal of M(A) and hence it is possible to develop an abstract Fredholm theory of M(A) relative to $K_M(A)$ ([6], Chapter F).

Let $\Phi_M(A)$ denote the class of all Fredholm elements of M(A) relative to $K_M(A)$, i.e. those elements of M(A) invertible modulo $K_M(A)$ and let $\Phi(A)$ the set of all Fredholm operators, i.e. the elements of L(A) invertible modulo K(A). Trivially we always have $\Phi_M(A) \subseteq \Phi(A) \cap K(A)$ and this inclusion may be proper [4]. It is of interest the problem of studying conditions on A for which we have $\Phi_M(A) = \Phi(A) \cap K(A)$. This question seems to have an special interest since the Calkin algebra L(A)/K(A) is not commutative however M(A) and

174 P. AIENA

 $K_M(A)$ are commutative. Moreover, in several applications there are concrete models of M(A) and $K_M(A)$. We recall that a Banach algebra B is said to be regular if for each closed subset F of the maximal regular closed ideal $\Delta(B)$ and for each $m_0 \notin F$ there exists an element $x \in B$ such that $x^{\hat{}}(F) = \{0\}$ and $x^{\hat{}}(m_0) \neq 0$.

THEOREM 1. ([4]) Let A be a commutative semi-simple Banach algebra and suppose M(A) regular. Then $\Phi_M(A) = \Phi(A) \cap M(A)$ and any $T \in \Phi(A) \cap M(A)$ has index 0.

The next theorem shows that the equality $\Phi_M(A) = \Phi(A) \cap M(A)$ holds for a wide class of Banach algebras which includes the case $A = L_1(G)$, G a compact abelian group. Let us denote by $\Phi_+(A)$ the class of all upper semi-Fredholm operators and by $\Phi_-(A)$ the class of all lower semi-Fredholm operators [8]. We recall that a bounded operator T on a Banach space is said to be a Riesz operator if $\lambda I - T$ is a Fredholm operator for each $\lambda \neq 0$ [9].

THEOREM 2. ([4]) Let $A = \overline{\operatorname{soc} A}$. Then $\Phi_M(A) = \Phi(A) \cap M(A)$ and for each $T \in M(A)$ the following are equivalent:

- i) $T \in \Phi_+(A)$.
- ii) $T \in \Phi_{-}(A)$.
- iii) $T \in \Phi(A)$.
- iv) $T \in \Phi(A)$ and ind T = 0.

Let $\omega_M(T)$, $W_M(T)$ and $\beta_M(T)$ denote the essential spectrum, the Weyl spectrum and the Riesz spectrum of T relative to the algebra M(A) and to the ideal K(A), respectively. By $\omega(T)$, W(T) and $\beta(T)$ we denote the corresponding sets of the operator T relative to L(A), K(A). Generally we have $\omega_M(T) \subseteq W_M(T) \subseteq \beta_M(T)$ and $\omega(T) \subseteq W(T) \subseteq \beta(T)$.

THEOREM 3. ([4]) If A is a commutative semi-simple Banach algebra which satisfies either M(A) regular or $A = \overline{\operatorname{soc} A}$, then $\omega(T) = W(T) = \beta(T)$ for each $T \in M(A)$.

In the sequel we shall denote by $\sigma_p(T)$, $\sigma_r(T)$, $\sigma_c(T)$, $\sigma_{ap}(T)$, the point spectrum, the residual spectrum, the continuous spectrum and the approximate—point spectrum of T, respectively. Let $\Delta(A)$ denote the maximal regular ideal space of A. We have

THEOREM 4. ([4]) Suppose $\Delta(A)$ discrete. Then for each $T \in M(A)$ we have $\sigma_p(T) = \varphi_T(\Delta(A))$ (the range of the Wang function φ_T associated with T). Moreover if $A = \overline{\operatorname{soc} A}$ then $\sigma_r(T)$ is empty and $\sigma(T) = \sigma_{ap}(T)$.

First we recall that a bounded operator on a Banach space is said to be meromorphic if its non zero spectral points are all poles of the resolvent $R(\lambda I - T)^{-1}$ (see [9]).

THEOREM 5. ([4]) Suppose $\Delta(A)$ discrete and $T \in M(A)$. The following are equivalent:

- i) T is a Riesz operator.
- ii) T is meromorphic.
- iii) $\sigma(T)$ is a finite set or a sequence which converges to zero.
- iv) $\sigma(T) = \varphi_T(\Delta(A)) \cup \{0\}$, and φ_T vanishes at infinity.
- 1) Any semi-simple annihilator Banach algebra has dense socle, (see [7], §32, Corollary 6), and in particular any dual algebra ([12], see also [7]), have this property. Examples of commutative semi-simple dual Banach algebras are $L_p(G)$, G a compact abelian group, $1 \leqslant p \leqslant \infty$, or C(G) the algebra of continuous functions on G with convolution for multiplication ([12], Theorem 15). Thus if T_{μ} is a convolution operator on $L_p(G)$, defined by $T_{\mu}(f) = \mu \star f$, $f \in L_p(G)$ and $\mu \in M(G)$, the algebra of all regular Borel measures, the results stated above hold. Let $A = L_1(G)$, G compact and abelian. Then $M(A) \stackrel{\sim}{=} M(G)$ ([15]) and $K_M(A) \stackrel{\sim}{=} L_1(G)$ (see [5]). Hence if $\mu \in M(G)$, T_{μ} is a Fredholm operator if and only if there exists a $\nu \in M(G)$ and a $\varphi \in L_1(G)$ such that $\mu \star \nu = \delta_0 \varphi$, where δ_0 is the Dirac measure concentrated at the identity.
- 2) Let A be a Banach algebra with an orthogonal basis $\{e_k\}$, ([10]). Clearly A has dense socie. Examples of these algebras are ℓ^p , $1 \leqslant p \leqslant \infty$, c_0 , and $L_p(\Gamma)$, Γ the torus of $\mathbb C$. In this case M(A) is isomorphic to a subalgebra of ℓ^{ϖ} and to any $T \in M(A)$ there corresponds a bounded sequence $(\lambda_k(Te_k))$ ([3]). If $\{e_k\}$ is unconditional, then $M(A) = \ell^{\varpi}$ (see [3]) and $T \in M(A)$ is a Fredholm multiplier if and only if there exists a sequence $\{\nu_k\} \in \ell^{\varpi}$ such that $\nu_k \lambda_k(Te_k) \to 1$ ([4]).

REFERENCES

 P. AIENA, Riesz multipliers on commutative semi-simple Banach algebras, Arch. Math. 50 (1990), 293-303.

- P. AIENA, On spectral properties of multipliers, Boll. Un. Mat. Ital. 7(5-B) (1991), 396-406.
- P. AIENA, Multipliers on Banach algebras with orthogonal basis, to appear in Boll. Un. Mat. Ital., 1991
- 4. P. AIENA, On Fredholm theory of multipliers, submitted.
- C. A. AKEMANN, Some mapping properties of the group algebra of a compact group, Pacific J. Math. 22 (1967), 1-8.
- 6. B.A. BARNES, G.J. MURPHY, M.R. SMYTH AND T.T. WEST, "Riesz and Fredholm Theory in Banach Algebras", Research Notes in Math. 67, Pitman, London, 1982.
- F. F. BONSALL AND J. DUNCAN, "Complete Normed Algebras", Springer-Verlag, Berlin, 1971.
- 8. S. R. CARADUS, W.E. PFAFFENBERGER AND B. YOOD, "Calkin Algebra and Algebras of Operators on Banach Spaces", Dekker, New York, 1974.
- 9. H. HEUSER, "Functional Analysis", J. Wiley and Sons, New York, 1982.
- T. HUSAIN AND S. WATSON, Topological algebras with orthogonal Schauder basis, Pacific J. Math. 91 (1980), 339-347.
- H. KAMOWITZ, On compact multipliers of Banach algebras, P.A.M.S. 81(1) (1981), 79-80.
- 12. I. KAPLANSKY, Dual rings, Ann. of Math. 49 (1948), 689-701.
- 13. R. LARSEN, "An Introduction to the Theory of Multipliers", Springer-Verlag, Berlin, 1971.
- 14. J. K. WANG, Multipliers of commutative Banach algebras, 11 (1961), 1131-1149.
- 15. J.G. WENDEL, On isometric isomorphisms of group algebras, Pacific J. Math. 1 (1951), 305-311.