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In some recent papers ([1], [2], [3], [4]) we have investigated some general
spectral properties of a multiplier defined on a commutative semi—simple Banach
algebra. In this paper we expose some aspects concerning the Fredholm theory of
multipliers. The main result of [4] states that the Fredholm multipliers of certain
commutative semi—simple Banach algebras may be intrinsecally characterized by
replacing the so—called Calkin algebra by a quotient algebra of multipliers. We
recall that a mapping T:4— A4, A any commutative Banach algebra with or
without a unit is said to be a multiplier if (Tz)y= z(Ty) holds for each z,y€ A.
In the sequel we shall always suppose that A is semi—simple Banach algebra. We
recall that if A is semi—simple then the ideal soc A4, the socle of A, does exists
([6]). Let M(A) denote the set of all multipliers of A. M(A) is a closed
commutative subalgebra of L(A4), the Banach algebra of all bounded linear
operators of A. Moreover M(A) is semi—simple ([13], Corollary 1.4.2). Let
K(A) be the closed ideal of all compact operators on A and let us denote by
Ky (A4) the closed ideal M(A)nK(A) of M(A). Since M(A) is semi—simple,
the socle of A4 does exist. Moreover for each Te€Ky(A) the spectrum
opay(T)=0(T) has 0 as unique accumulation point, so Ky(A) is an
inessential ideal of M(A) and hence it is possible to develop an abstract
Fredholm theory of M(A) relative to Ky (A) ([6], Chapter F).

Let ®,(A) denote the class of all Fredholm elements of M(A4) relative to
Ky (A), ie. those elements of M(A) invertible modulo Ky(A) and let ®(A4)
the set of all Fredholm operators, i.e. the elements of L(A) invertible modulo
K(A). Trivially we always have ®,(A4)C®(A)NK(A) and this inclusion may
be proper [4]. It is of interest the problem of studying conditions on A for which
we have ®y(A4)=®(A)NK(A). This question seems to have an special interest
since the Calkin algebra L(A)/K(A) is not commutative however M(A) and
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Ky (A) are commutative. Moreover, in several applications there are concrete
models of M(A) and Ky (A). We recall that a Banach algebra B is said to be
regular if for each closed subset F' of the maximal regular closed ideal A(B) and
for each my¢F there exists an element z€B such that z(F)= {0} and
z”(mg) #0. '

THEOREM 1. ([4]) Let A be a commutative semi—simple Banach algebra
and suppose M(A) regular. Then ®y(A)=®(A)NM(A) and any
Ted(A)NM(A) has indez 0.

The next theorem shows that the equality &, (4) = ®(A)NnM(A) holds for
a wide class of Banach algebras which includes the case A =L;(G), G a compact
abelian group. Let us denote by ®,(A4) the class of all upper semi—Fredholm
operators and by ®_(A4) the class of all lower semi—Fredholm operators [8]. We
recall that a bounded operator T on a Banach space is said to be a Riesz operator
if AI-T is a Fredholm operator for each A #0 [9].

THEOREM 2. ([4]) Let A=socA. Then ®y(A)=®(A)nM(A) and for
each T e M(A) the following are equivalent:
i) Ted,(A).
i) Ted_(A).
i) Ted(4).
1w) Te®(A) and ind T=0.

Let wy(T), Wy(T) and By (T) denote the essential spectrum, the Weyl
spectrum and the Riesz spectrum of T relative to the algebra M(A) and to the
ideal K(A), respectively. By w(T), W(T) and JA(T) we denote the
corresponding sets of the operator T relative to L(A), K(A). Generally we have
wy(T)CWy(T)cByu(T) and w(T)c W(T)cB(T).

THEOREM 3. ([4]) If A is a commutative semi—simple Banach algebra
which satisfies either M(A) regular or A =soc A, then w(T)= W(T)=4(T) for
each Te M(A).

In the sequel we shall denote by 0p(T), 0,(T), 0c(T), 04p(T), the point
spectrum, the residual spectrum, the continuous spectrum and the
approximate—point spectrum of T, respectively. Let A(A) denote the maximal
regular ideal space of A. We have
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THEOREM 4. ([4]) Suppose A(A) discrete. Then for each TeM(A) we
have o, (T) = o7 (A(A)) (the range of the Wang function o1 associated with T).
Moreover if A =soc A then o,.(T) is empty and 0(T) =04, (T).

First we recall that a bounded operator on a Banach space is said to be
meromorphic if its non zero spectral points are all poles of the resolvent
R(A-T)"1 (see [9]).

THEOREM 5. ([4]) Suppose A(A) discrete and T e M(A). The following
are equivalent:
i) T is a Riesz operator.
i) T is meromorphic.
i) o(T) is a finite set or a sequence which converges to zero.
i) o(T)=pr(A(A))U{0}, and pr vanishes at infinity.

1) Any semi—simple annihilator Banach algebra has dense socle, (see [7],
§32, Corollary 6), and in particular any dual algebra ([12], see also [7]), have this
property. Examples of commutative semi—simple dual Banach algebras are
L,(G), G a compact abelian group, 1<p<goo, or C(G) the algebra of
continuous functions on G with convolution for multiplication ([12], Theorem
15). Thus if T, is a convolution operator on L,(G), defined by T, (f)=pxf,
feLy(G) and peM(G), the algebra of all regular Borel measures, the results
stated above hold. Let A=L,(G), G compact and abelian. Then M(4) =M(G)
([15]) and Ky (A)=Li(G) (see [5]). Hence if peM(G), T,
operator if and only if there exists a veM(G) and a @€L,(G) such that
uxv =8y— p, where § is the Dirac measure concentrated at the identity.

2) Let A be a Banach algebra with an orthogonal basis {e}, ([10]). Clearly
A has dense socle. Examples of these algebras are £, 1<p< 00, ¢g, and Ly (),
I' the torus of C. In this case M(A) is isomorphic to a subalgebra of £® and to
any TeM(A) there corresponds a bounded sequence (Ai(Tet)) ([3]). If {ex} is
unconditional, then M(A)={® (see [3]) and Te€M(A) is a Fredholm multiplier
if and only if there exists a sequence {v;} € £® such that v A;(Te) — 1 ([4]).

is a Fredholm
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