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0. INTRODUCTION AND PRELIMINARIES

In this paper we will examine the relationship between modularity in the
lattices of subalgebras of A and A, for A an associative algebra over an
algebraically closed field. To this aim we wil construct an ideal which measures
the modularity of an algebra (not necessarily associative) in §1, examine modular
associative algebras in §2, and prove in §3 that the ideal constructed in §1
coincides for A and A(). We will also examine some properties of the ideal
mentioned in §1 when the algebras involved are Jordan.

The usual terms in lattice theory can be found in [6).

Let J be an algebra over a field. We will put L(J) for its lattice of
subalgebras, where AV are naturally defined (< is the inclusion relation). We
define the length of J (and put £(J)) as the length of L(J). It is very easy to
prove that if J is a solvable algebra, then its length and dimension coincide. In
general we obviously have that {(J)<dimgJ, where F is the ground field.

DEFINITION. An algebra J is called modular (semimodular), if L(J) is
modular (semimodular).

The easiest examples of modular algebras are trivial algebras since the
lattice of submodules of a module is a modular lattice.

1. THE MODULAR RADICAL

Let J be an algebra. We define M; (J) as the sum of the ideals of J which
are modular algebras (we will say modular ideals). For any a ordinal we will
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construct M (J). Supposing we have already constructed the My(J)’s for all
< a,

— if a is not a limit ordinal M, (J) is such that M, (J)/My_,1(J)=
M, (T My_1 (7)),

— if a is a limit ordinal we will put M, (J) =Ug<o Mp(J)-

We now define M(J) as the union (or the limit) of the M, (J)’s for all a.
We will say an algebra J to be M—semisimple if M(J)=0 and M-radical if
M(J)=J.

THEOREM. Let J be an algebra. The quotient J/M(J) has mo monzero
modular ideals. Moreover, M(J) is the smallest ideal in J with this property.

PROPOSITION. Let J be a finite—dimensional Jordan algebra. Then
J/M(J) is semisimple (i.e. Jac(J)=0).

DEFINITION. Let J be a Jordan algebra. A non—zero idempotent e in J
will be called a modular idempotent when it is completely primitive (i.e. J;(e),

the (1)—component in the Pierce decomposition of J with respect to e, is a
division algebra), J;,5(e)=0 and J;(e) is modular.

THEOREM. Let J be a finite—dimensional Jordan algebra and N be its
nilpotent radical. Put

J/N=(J/N)y(e1)e---0(J/N); (¢ )05,

with ey ,...,e; modular orthogonal idempotents in J/N, S semisimple such that its
directs summands which are division algebras are not modular. Then

J/M(J) =S,
M(J)=<J1(€1),...,J1(€.,.),N>,
where the e;’s are orthogonal idempotents in J such that e;+N=¢;" for all i.

When the ground field F is algebraically closed and the Jordan algebra J is
finite—dimensional an idempotent e is modular if and only if it is completely
primitive and Jj,5(e)=0. In these conditions J/M(J) is the sum of the simple
components of J/N not isomorphic to F and M(J) is generated by N and the
idempotents which lift the idempotents of J/N in the simple components of J/N
isomorphic to F.
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2. MODULAR ASSOCIATIVE ALGEBRAS

PROPOSITION. A modular associative algebra is algebraic. If it is nil then it
1s locally nilpotent.

THEOREM. Let A be an associative nilalgebra. Then the following are
equivalent:
i) A is modular.
it) A is semimodular.
11i) Given a pair of subalgebras of A, S and T, S+ T is a subalgebra of A.

THEOREM. Let A be a semimodular associative algebra over an
algebraically closed field. Then A/Nil(A) is isomorphic to 0, F or FeF.

COROLLARY. Let A be a semimodular finite—dimensional associative
algebra over F, an algebraically closed field. Then {{A)=dimg A.

THEOREM. Let A be an associative algebra over an algebraically closed
field. Then the following are equivalent:
i) A is modular.
it) A 1is semimodular.
ii3) Given a pair of subalgebras of A, S and T, S+ T is a subalgebra of A.

3. MODULARITYIN A AND A

Throughout this section all algebras will be considered over algebraically
closed fields of characteristic not two.

THEOREM. If A is a modular associative algebra, then A is a modular
Jordan algebra.

COROLLARY. Let J be a special Jordan algebra which is M—semisimple.
Then, there exists an associative envelope for J, which is M—semisimple.

THEOREM. Let A be an associative algebra. Then M(A)=M(AW).
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