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From now on, (L,|-|) will denote a normal Banach sequence space i.e. a
Banach sequence space satisfying:

(a) pcLcuw algebraically and the inclusion (L,|-]]) — w is continuous
(here w and ¢ stands for KN=II K and @K respectively).

() Va=(ay)eL,Vb=(b;)ew with |b;|<|as] (keN), we have beL and
el < llall-

Clearly, every projection onto the first n coordinates p,:w— w,
(ax)keN — ((@)k<n:(0)k>n) induces a norm—decreasing endomorphism on L.
Other properties on (L, ||-||) we may require are the following:

(7) lall=lim ||p,(a)l| (n~oc0), Va€L.

(¢) lim |la—p,(a)]|=0 (n-o00), Va€L (ie. p is densein (L,]-|)).

(6) If aew, and supyen|pa(a)l|<oco, then a€L and |a|=lim |p,(a)|
(n-00).

For a locally convex space Z, we shall denote by b(Z) the set of all
bounded sets in Z and by Z; its strong dual.
Unexplained terminology as in [6,7,11].

DEFINITION. Let (L,|-|) be a normal Banach sequence space, let Y and
X be locally convex spaces and f: Y— X a continuous linear mapping. For
every nelN, we define F:=II ., YXL((X)»,) provided with the topology of
such a finite topological product. For every nelN, we also define the mapping
9 Fon— Fo, (TR)ken— ((zk)k<mf(zn)1(zk)k>n)' Clearly g, (neN) is a
continuous linear mapping. We define the projective limit F of Moscatelli type
w.r.t. (with respect to) (L,|-]]), ¥, X and f: Y— X by F=pr10j,en(Fn,9a)-
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PROPOSITION 1. Let (L,||-]|) be @ normal Banach sequence space which
fulfils property (¢) and let Z be a locally convez space such that

i) For every Beb(L(Z)), there is Beb(Z) with Beb(L(Zp)).

1) For every weL’(Zy), there is an absolutely convezr equicontinuous set

McZ withuweL (Zy).

Then L(Z), 1is canonically algebraically and topologically isomorphic to
L' (Zy).

Remark. In particular i) and i) are satisfied if either L satisfies (6) and
Z is a quasi—barrelled DF—space or L satisfies (¢) and Z is metrizable.

In order to establish now the duality between the general inductive and
projective limits of Moscatelli type, let us first recall the definition of the
inductive ones.

Let (L,||-]]) be a normal Banach sequence space, let Y and X be locally
convex spaces, Y continuously included in X. For every nelN, the space E,:=
My en XXL((Y)t»r) has the obvious meaning and should be provided with the
canonical product topology. Now we define the inductive limit of Moscatelli type
wir.t. (L,]-]), X, Y (and the continuous canonical inclusion j:Y— X) as E=
ind,¢N E, (we refer to [8] for details).

PROPOSITION 2. Let (L,|-|) be a mormal Banach sequence space with
property (¢), let Y and X be a locally convez spaces and f: Y — X a continuvous
linear mapping with dense range. Let F be the corresponding projective limit of
Moscatelli type. Let E be the inductive limit of Moscatelli type w.r.t. the duals
(L)1), X', Yy and ft:Xy — Yy (that we shall always consider as an
inclusion). If the following two conditions are satisfied:

i) For every Beb(L(X)) there is Beb(X) such that Beb(L(Xp)).

i) For every uweL’(Xy), there is an absolutely conver X—equicontinuous

set MCc X’ such that ue L'(Xy ).

Then F'=E algebraically and E is continuously embedded in Fy .

The topological identity in the proposition above is rather delicate. We refer
to [3] and [5] for the case of Banach spaces Y and X.

PROPOSITION 3. Let (L,|-|) be a normal Banach sequence space with
property (€), let Y and X be a locally conver spaces, Y continuously included in
X. Let E be the inductive limit of Moscatelli type w.r.t. (L,|-|), ¥, X (and the
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continuous canonical inclusion j: Y—— X). Let F be the corresponding projective
limit of Moscatelli type w.r.t. the duals (L', |-|), Xy, Yy and jt. If the following
two conditions are satisfied: ,

i) For every Beb(L(Y)) thereis Beb(Y) such that Beb(L(Yp)).

ii) For every ueL’(Yy), there is an absolutely conver Y—equicontinuous

set MCY’ such that ueL'(Yy ).

Then E’'=F algebraically, the inclusion Ej CF is continuous and Ej =F
algebraically and topologically whenever E is regular.
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