Some Results on the Duals of the Inductive and Projective Limits of Moscatelli Type

Y. MELÉNDEZ

Dpto. de Matemáticas, Univ. Extremadura, 06071 Badajoz, Spain

AMS Subject Class. (1980): 46A12

Received April 22, 1992

From now on, $(L, \|\cdot\|)$ will denote a normal Banach sequence space i.e. a Banach sequence space satisfying:

- (α) $\varphi \subset L \subset \omega$ algebraically and the inclusion $(L, \|\cdot\|) \longrightarrow \omega$ is continuous (here ω and φ stands for $\mathbb{K}^{\mathbb{N}} = \Pi_{k \in \mathbb{N}} \mathbb{K}$ and $\Theta_{k \in \mathbb{N}} \mathbb{K}$ respectively).
- (β) $\forall a = (a_k) \in L, \forall b = (b_k) \in \omega$ with $|b_k| \le |a_k|$ ($k \in \mathbb{N}$), we have $b \in L$ and $||b|| \le ||a_k||$.

Clearly, every projection onto the first n coordinates $p_n: \omega \longrightarrow \omega$, $(a_k)_{k \in \mathbb{N}} \longrightarrow ((a_k)_{k < n}, (0)_{k > n})$ induces a norm-decreasing endomorphism on L. Other properties on $(L, \|\cdot\|)$ we may require are the following:

- $(\gamma) \quad ||a|| = \lim ||p_n(a)|| \quad (n \to \infty), \ \forall a \in L.$
- (ϵ) $\lim ||a-p_n(a)|| = 0$ $(n \to \infty)$, $\forall a \in L$ (i.e. φ is dense in $(L, ||\cdot||)$).
- (b) If $a \in \omega$, and $\sup_{n \in \mathbb{N}} ||p_n(a)|| < \infty$, then $a \in L$ and $||a|| = \lim ||p_n(a)||$ $(n \to \infty)$.

For a locally convex space Z, we shall denote by $\mathfrak{b}(Z)$ the set of all bounded sets in Z and by Z'_b its strong dual.

Unexplained terminology as in [6,7,11].

DEFINITION. Let $(L,\|\cdot\|)$ be a normal Banach sequence space, let Y and X be locally convex spaces and $f\colon Y\longrightarrow X$ a continuous linear mapping. For every $n\in\mathbb{N}$, we define $F_n:=\Pi_{k< n}\ Y\times L((X)_{k\geqslant n})$ provided with the topology of such a finite topological product. For every $n\in\mathbb{N}$, we also define the mapping $g_n\colon F_{n+1}\longrightarrow F_n,\ (x_k)_{k\in\mathbb{N}}\longrightarrow ((x_k)_{k< n},f(x_n),(x_k)_{k\geqslant n})$. Clearly $g_n\ (n\in\mathbb{N})$ is a continuous linear mapping. We define the projective limit F of Moscatelli type w.r.t. (with respect to) $(L,\|\cdot\|)$, Y, X and $f\colon Y\longrightarrow X$ by $F=\operatorname{proj}_{n\in\mathbb{N}}(F_n,g_n)$.

PROPOSITION 1. Let $(L, \|\cdot\|)$ be a normal Banach sequence space which fulfils property (ϵ) and let Z be a locally convex space such that

- i) For every $\mathfrak{B} \in \mathfrak{b}(L(Z))$, there is $B \in \mathfrak{b}(Z)$ with $\mathfrak{B} \in \mathfrak{b}(L(Z_B))$.
- ii) For every $u \in L'(Z'_b)$, there is an absolutely convex equicontinuous set $M \subset Z'$ with $u \in L'(Z'_M)$.

Then $L(Z)_b'$ is canonically algebraically and topologically isomorphic to $L'(Z_b')$.

Remark. In particular i) and ii) are satisfied if either L satisfies (δ) and Z is a quasi-barrelled DF-space or L satisfies (ϵ) and Z is metrizable.

In order to establish now the duality between the general inductive and projective limits of Moscatelli type, let us first recall the definition of the inductive ones.

Let $(L, \|\cdot\|)$ be a normal Banach sequence space, let Y and X be locally convex spaces, Y continuously included in X. For every $n \in \mathbb{N}$, the space $E_n := \prod_{k < n} X \times L((Y)_{k > n})$ has the obvious meaning and should be provided with the canonical product topology. Now we define the inductive limit of Moscatelli type w.r.t. $(L, \|\cdot\|), X, Y$ (and the continuous canonical inclusion $j: Y \longrightarrow X$) as $E = \operatorname{ind}_{n \in \mathbb{N}} E_n$ (we refer to [8] for details).

PROPOSITION 2. Let $(L, \|\cdot\|)$ be a normal Banach sequence space with property (ϵ) , let Y and X be a locally convex spaces and $f: Y \longrightarrow X$ a continuous linear mapping with dense range. Let F be the corresponding projective limit of Moscatelli type. Let E be the inductive limit of Moscatelli type w.r.t. the duals $(L', \|\cdot\|'), X', Y'_b$ and $f^t: X'_b \longrightarrow Y'_b$ (that we shall always consider as an inclusion). If the following two conditions are satisfied:

- i) For every $\mathfrak{B} \in \mathfrak{b}(L(X))$ there is $B \in \mathfrak{b}(X)$ such that $\mathfrak{B} \in \mathfrak{b}(L(X_B))$.
- ii) For every $u \in L'(X_b')$, there is an absolutely convex X-equicontinuous set $M \subset X'$ such that $u \in L'(X_M')$.

Then F' = E algebraically and E is continuously embedded in F'_b .

The topological identity in the proposition above is rather delicate. We refer to [3] and [5] for the case of Banach spaces Y and X.

PROPOSITION 3. Let $(L, \|\cdot\|)$ be a normal Banach sequence space with property (ϵ) , let Y and X be a locally convex spaces, Y continuously included in X. Let E be the inductive limit of Moscatelli type w.r.t. $(L, \|\cdot\|)$, Y, X (and the

continuous canonical inclusion $j: Y \longrightarrow X$). Let F be the corresponding projective limit of Moscatelli type w.r.t. the duals $(L', \|\cdot\|'), X'_b, Y'_b$ and j^t . If the following two conditions are satisfied:

- i) For every $\mathfrak{B} \in b(L(Y))$ there is $B \in b(Y)$ such that $\mathfrak{B} \in b(L(Y_B))$.
- ii) For every $u \in L'(Y'_b)$, there is an absolutely convex Y-equicontinuous set $M \subset Y'$ such that $u \in L'(Y'_M)$.

Then E' = F algebraically, the inclusion $E'_b \subset F$ is continuous and $E'_b = F$ algebraically and topologically whenever E is regular.

ACKNOWLEDGEMENTS

I would like to thank J. Bonet and S. Dierolf for their valuable suggestions, interesting talks about the subject and constant encouragement and C. Fernández for her helpful comments.

REFERENCES

- 1. BONET, J. AND DIEROLF, S., A note on biduals of strict (LF)-spaces, Results in Math. 13 (1988), 23-32.
- BONET, J. AND DIEROLF, S., On LB-spaces of Moscatelli type, Doga Turk. J. Math. 13 (1989), 9-33.
- 3. BONET, J. AND DIEROLF, S., Fréchet spaces of Moscatelli type, Rev. Matem. Univ. Complutense Madrid 2(No. suplementario) (1989), 77-92.
- BONET, J., DIEROLF, S. AND FERNÁNDEZ, C., On two classes of LF-spaces, to 4. appear in Portugalia Math.
- BONET, J., DIEROLF, S. AND FERNÁNDEZ, C., The bidual of a distinguished 5. Fréchet space need not be distinguished, to appear in Archiv. Math.
- JARCHOW, H., "Locally Convex Spaces", B.G. Teubner, Stuttgart, 1981. 6.
- 7.
- KOTHE, G., "Topological Vector Spaces I", Springer, Berlín, 1969.

 MELÉNDEZ, Y., General LF-spaces of Moscatelli type, Doga Turk. J. Math. 15 8. (1991), 172-192.
- 9. MELÉNDEZ, Y., Duals of the inductive and projective limits of Moscatelli type, to appear in Note di Matematica.
- MOSCATELLI, V.B., Fréchet spaces without continuous norms and without bases, 10. Bull. London Math. Soc. 12 (1980), 63-66.
- PÉREZ CARRERAS, P. AND BONET, J., "Barrelled Locally Convex Spaces", North 11. Holland Math. Studies 131, Amsterdam, 1987.
- 12.
- PIETSCH, A., "Nuclear Locally Convex Spaces", Springer, Berlín, 1972. ROSIER, R.C., Dual spaces of certain vector sequence spaces, Pacific J. Math. 46 13. (1973), 487-500.

(this paper is to appear in Note di Matematica)