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We study in this note the control of nonlinear diffusion equations and of
parabolic variational inequalities by means of an approach which has been proved
useful in the analysis of the control of nonlinear ordinary differential equations
([3]) and linear partial differential equations ([2] and [3]). It is based on an idea of
Young [7], consisting in the replacement of classical variational problems by
problems in measure spaces; its extension to optimal control problems, and the
realization that one is dealing with fully linear problems —even if the original
problems were nonlinear in the usual sense— is due to us [3]; see also the review
paper [4] for a full bibliography as well as a historical analysis of these matters.

We shall consider a nonlinear difussion equation and a parabolic variational
inequality, with boundary controls; we wish to minimize integral perfomance
criteria, given that the terminal state should be fixed. We first write some
well-known integral relationships satisfied by the solution of the equations, and
then proceed to transform the problems; instead of minimizing over a set of
admissible pairs trajectory-control, we find that it is possible to minimize over a
product of two measure spaces. The advantages of the new formulation are: (i) an
automatic existence theory —there always is a minimizer for our measure-
-theoretical problem; (ii) the new problem is linear, and then one can use the
whole paraphernalia of linear analysis for dealing with such a problem; (iii) the
minimization is global —the value reached, say numerically, is close to what one
could reasonably call the global infimun of the problem. The prize to pay for these
advantages is that the final state is reached only asymptotically —that is, as the
number of (linear) constraints associated with the measure-theoretical problem
tends to infinity; the situation is similar to our results in the finite-dimensional
case; see [3], Chapter 4. A computational method has been developed, in which we
treat the semi-infinite linear programming problems thus developed by means of
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simplex methods; nearly-optimal controls can be constructed in this manner.
DESCRIPTION

Let D be a bounded domain in R" with smooth boundary 6D, and T a
positive real number, and define Qr:=DX(0,T), T'p:=3dDX(0,T), Dy:=DX{T}.
We shall consider two types of systems; the first, a nonlinear diffusion equation,

(1) uy(z,t)—div(k(z)Vu(z,t)) =f(u(z,t),z,t),

for (z,t)eQy, with the initial condition u(z,0)=0, z€D, and the boundary
condition Vu-n|p, =v; n is the outward normal, and the function (s,t)el'p —
v(s,t)eV CR is the control function, taking values in a bounded control set V.
The terminal relationship u(-,T)=g is to be satisfied; g is a given continuous
function on Dy. We transform now this problem, with a view at generalization.
Let ¢ be in a subset of C*(Q7), which we shall call K%(Q7), and which consists
of those functions in C*(Qr) whose normal derivative on I'y is zero. Then

@) f, [wlor+kAp+ToW) fo]dadt == [ kpvdsdt + [, gpds,

for all g€ K% Q7). Since the control set V is bounded, then there is a bounded
set A CR so that u(z,t)€A, V(z,t)€Qr.

Our second type of system is described by a variational inequality. Consider
the following spaces: H:=L%D), V:=HYD), W(0,T):={v:veL?0,T;V),
v eL*(0,T;V")}, Wo(0,T):={v: veW(0,T), v(0)=ug, ug given in H}, and the
(continuous, but not differentiable) function ¢, defined by:

g1(A = hy) Ag<hy
¢(A) =10 h1< A <hy
92(A = hy) hy <A

with g, <0< gy, hy <hy. We can consider the variational inequality [1]:

Jop [ulo=1) + Mg —0) = flp-u)] dadt + [ [6(0) - #(u)] dsdt >0,
(3) u€Wy(0,T), Yoe W(0,T).

We shall then call v the control function u|p;, so that our boundary condition is
u|pp =v; the control function takes values in a bounded set V’. We shall also
transform this problem. We shall choose uo=0 in the definition of W(0,T'), and
put ¢ —u=w; then
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) fOT [u(—w; — Aw) — fw] dzdt + fDT gwdz +

+ [ [6(w+v) - g(v) — vVw-n]dsdt >0, VuweW(0,T).
rr

Again, since the control set V’ is bounded, then there is a bounded set A’CR so
that u(t,z)€A’ V(z,t)€Qp. The terminal relationship u(-,T)=g is also to be
satisfied; g is, again, a given continuous function on Dy.

We shall consider two problems. Problem P consists of the minimization of
the integral functional

() Jwv)i= [ fo(um)at)dedt + [ fi(s(s,t)s.t) dsdt,

over the set of admissible pairs for the first of our systems; the second, Problem
P’, of the same functional for the second system, the variational inequality. The
functions fy and f; are continuous functions defined in the appropriate spaces.

METAMORPHOSIS

In general, the minimization of the functional (5) over the set of admissible
pairs for problems P or P’ is not possible —the infimum is not attained at any
admissible pair. We proceed then to transform these problems, realizing that a
solution of (2) or of (4) defines a linear, bounded positive functional u(-,-):F—
Jop F(u(z,t),z,t)dzdt in the space C(Q) of continuous real-valued functions F,
with Q:=AXQ7 for problem P, and Q:= A’XQ for P’. Also, a control v defines
a linear, bounded, positive functional: v(+,-):G — [p; G(v(s,t),s,t)dsdt in the
space C(w) of continuous functions G, w:= VXIp for P, and w := V'XI'p for P.
By Riez’s theorem, an admissible pair (u,v) defines two Radon measures x and v,
the first on , the second on w, so that (2) becomes:

= — 2 7,
(6) fQF‘P dp +fw Glpdl/—fDTgtpdz =a,, YpeK*(Qr),
where
Fo(u,z,t) := ulpy(z,t) +k(z,t)Ap(z,t) + VE(z,t)Vip(2,t)] + f(u,z,t)0(z,t),
Gy(v,8,t) = ko(s,t)v.
Also, for problem P’, (4) becomes

(7 fn Fj du +fw Gy, dv ngT gwdz :=ay,, YweW(0,T),
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where
F} (u,z,t) := u[wy(z,t) + Aw(z,t)] +f(u,z,t)w(z,t),

Gy (9,8,t) := — ¢ (w(z,t) +v) +d(v) +vVw(s,t) - n.

Thus, the minimization of the functional (5) over the set of admisible pairs is
equivalent to the minimization of

(8) I(u,v) = u(fo) +v(H),

where we have written u(f) for [qfdu, and v(g) for [,gdv, over the set of
measures (p,v) corresponding to admissible pairs, which satisfy

(9) w(Fy) +v(Gy) = ey, VoeK*(Qr),
in the case of problem P, and
(10) w(Fy) +v(Gh) <y . YweW(0,T),

for problem P’. So far, we have not achieved anything new. We consider the
extension of our problems; we shall consider the minimization of (8) over the set
S of all pairs of measures (u,v) in 4 *(2)XA*(w) satisfying (9) for problem P
and (10) for P/, plus the extra condition, satisfied of course by the admissible
pairs, that these measures project on the (z,t) or (s,t) plane as the respective
Lebesgue measures. (See [3] for a further discusion of this point.) Thus, if a
function £:Q — R depends only on (z,t), then u(¢)= a¢, the Lebesgue integral of
¢ over Qr. Also, if a function ¢:w— R depends only on (s,t), then v({)=1b,
the Lebesgue integral of { over I'y. Finally, we have, writting 1g and 1, for the
characteristic functions of Q and w, p(1g) < T, v(1,) < T; we have assumed that
the Lebesgue measures of D and dD equal unity.

EXISTENCE, APPROXIMATION AND COMPUTATION

The proofs of the following Propositions are much like that of Theorem II.1
in [3] and the Appendix in [2] respectively, for both cases P and P’:

PROPOSITION 1. There ezists an optimal pair (u* v*)€S which minimizes
the functional I.

PROPOSITION 2. The set S;CS of measures (u,v) which are piecewise-
~constant functions on Q and w respectively and satisfy (9) or (10) and the rest of
the constraints is weakly*-dense in S.
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Let {p;: i=1,2,...} be a set of functions which is total in K*(Qr), that is,
whose linear combinations are uniformly dense in this space; we shall write
F;:=F,;, G;:=Gy;, a;:=ay,;, Vi. Let further {w;:1=12,..} be a set of
functions which is total in W(0,T). We shall write Fy:=F;., G;:=Gy;,
aj:=aj,; , Vi. Further, we shall also take sets of functions {¢;:j=1.2,...} and
{¢x: k=1,2,...} which are total in the respective subspaces of C(f2) and C(w),
writing a; for ag; and by, for b, . We have then our main result of approximation;

the proof is much like that of Proposition III.1 in [3]:

PROPOSITION 3. Let My, My and M3 be positive integers. Consider the
problem of minimizing
() — wfo) +v(f)
over the set S(M;,My,M3) of measures in K (Q)XHK (w) satisfying u(1g) < T,
v(1,)< T, and (for P) p(F;) + v(G;) =ea;, 1=1,2,...,.M;, while for P’ these are
replaced by: u(Fy) +v(Gy)<af, i=12,.,My, while for both cases: p(¢;) = a;,
J=1,2,...,My, v({) = b, k=1,2,...,M3. Then, as My ,My,M3 — 0,

it [u() + V()] — inflaCe) + v(A)]

S(M,, M, , M,

We note that our optimization is global, infg/<infJ, where this infimun is
over the clases of admissible pairs for either P or P’; this may be an strict
inequality; see [3] for a discussion of this point.

How do we construct suboptimal pairs of trajectories and controls for the
functional (5)?. First we obtain optimal measures (u*,v*) for a problem such as
the one in Proposition 3. We obtain then a (weak*) approximation to (p*,v*) by
a set of two piecewise-constant functions (u,v) by means of the results given in
Proposition 2. The control function v can serve as boundary function for a weak
solution u, of the system (2) for P and (4) for P’. Then, for both P and P,

THEOREM 1. Let (u,,v) be the pair constructed as ezplained above. Then,
under the appropriate conditions on the approzimations involved,

i) The pair (u,,v) s asymptotically admissible; that 1is, as
M, ,My,M3 — 0, the final state u,(-,T) — g in Lo(Dr).

ii) As My ,My,M3, tend to oo, J(u,,v) — infgl(p,v).

This theorem has suggested a computational method for this type of
problem; since the problems involved are semi-infinite linear programming
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problems, estimates for the optimal controls can be obtained by applying some of
the methods of solution for such problems. The linear programs which result are
well-behaved; results of these, as the proofs of the theorems, will be given in
the literature ([5],[6]).
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