Homomorphisms on some Function Algebras

M.I. GARRIDO², J. GÓMEZ GIL¹ AND J.A. JARAMILLO¹

Dpto. de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
 Dpto. de Análisis Matemático, Universidad Complutense de Madrid, 28040 Madrid, Spain

AMS Subject Class. (1991): 46E25, 54C40

Received September 11, 1992

0. Introduction

Suppose that A is an algebra of continuous real functions defined on a topological space X. We shall be concerned here with the problem as to whether every nonzero algebra homomorphism $\varphi \colon A \to \mathbb{R}$ is given by evaluation at some point of X, in the sense that there exists some a in X such that $\varphi(f) = f(a)$ for every f in A. This problem goes back to the work of Michael [19], motivated by the question of automatic continuity of homomorphisms in a symmetric *-algebra. More recently, the problem has been considered by several authors, mainly in the case of algebras of smooth functions: algebras of differentiable functions on a Banach space in [2], [11], [13] and [14]; algebras of differentiable functions on a locally convex space in [3], [4], [5] and [6], and algebras of smooth functions in the abstract context of "smooth spaces" in [18]. We shall be interested both in the general case and in the case of functions on a Banach space.

This report is based on the results obtained in [8].

1. GENERAL RESULTS

For a topological space X, let C(X) be the algebra of all continuous real functions defined on X, and let $C^*(X)$ be the subalgebra of all bounded functions in C(X). If A is a subalgebra of C(X), we denote by $Hom\,A$ the set of all nonzero multiplicative linear functionals on A. For each $a\in X$, let δ_a be the functional $f\mapsto \delta_a(f)=f(a)$ on A; clearly $\delta_a\in Hom\,A$. We shall write $Hom\,A=X$ when every $\varphi\in Hom\,A$ is of the form $\varphi=\delta_a$ for some $a\in X$. Recall that a subalgebra A of C(X) is said to be inverse-closed (respectively, closed under bounded inversion) if whenever $f\in A$ and $f(x)\neq 0$ (respectively, $|f(x)|\geqslant 1$) for

¹ Partially supported by DGICYT PB 90-0044

every $x \in X$, then $1/f \in A$.

If X is a completely regular space, let βX be the Stone-Cech compactification of X and, for $f \in C(X)$, let $\hat{f}: \beta X \to \mathbb{R} \cup \{\infty\}$ denote the continuous extension of f. Note that if f is bounded then \hat{f} is finite. For each $\xi \in \beta X$ we define the algebra $A_{\xi} = \{f \in C(X): \hat{f}(\xi) \neq \infty\}$.

PROPOSITION 1.1. Let X be a completely regular space, let $A \subset C(X)$ be a subalgebra with unit, closed under bounded inversion, and let $\varphi \in Hom A$. Then there exists $\xi \in \beta X$ such that $A \subset A_{\xi}$ and $\varphi(f) = \hat{f}(\xi)$ for every $f \in A$.

REMARKS 1.2. (1) In Proposition 1.1, the point $\xi \in \beta X$ is not unique, in general. We can consider as an example the subalgebra $A \subset C(\mathbb{R})$ of all bounded uniformly continuous functions on \mathbb{R} . In this case each $\xi \in \beta \mathbb{R}$ defines a homomorphism on A, and, using ideas of [15], it is not difficult to find two different points in $\beta \mathbb{R}$ defining the same homomorphism on A.

- (2) We cannot delete the condition "A is closed under bounded inversion" in Proposition 1.1. For instance, if X = [0,1] and $A \subset C([0,1])$ is the subalgebra of all polynomial functions on [0,1], then $\beta X = X$ but every $\xi \in \mathbb{R}$ defines a homomorphism on A.
- (3) Let X be a completely regular space and let $A \subset C(X)$ be a subalgebra with unit. If $\varphi \in HomA$ is positive (that is, $\varphi(f) \geqslant 0$ whenever $f \geqslant 0$) then Proposition 1.1 implies that there exists $\xi \in \beta X$ such that $A \subset A_{\xi}$ and $\varphi(f) = \hat{f}(\xi)$ for every $f \in A$. On the other hand, it also follows from Proposition 1.1 that, if A is closed under bounded inversion, then every $\varphi \in HomA$ is positive.

PROPOSITION 1.3. Let X be a completely regular space and let $A \subset C(X)$ be a subalgebra with unit, closed under bounded inversion. Suppose that for each $\xi \in \beta X \setminus X$ there exists $f \in A$ such that $\hat{f}(\xi) = \infty$. Then Hom A = X.

The condition in Proposition 1.3 is quite abstract, but it can be applied directly in many cases. For example, if $A \subset C(\mathbb{R}^n)$ is a unital subalgebra closed under bounded inversion and A contains the projections $\pi_j: \mathbb{R}^n \to \mathbb{R}$ (for $j=1,\ldots,n$), then Proposition 1.3 implies that $Hom A = \mathbb{R}^n$. Indeed, in this case $(\pi_1^2 + \ldots + \pi_n^2)^{\hat{}}(\xi) = \infty$ for every $\xi \in \beta \mathbb{R}^n \setminus \mathbb{R}^n$. In particular, A could be the algebra of all rational functions, or all real-analytic functions, or all C^m -functions $(1 \le m \le \infty)$ on \mathbb{R}^n . More generally, if X is locally compact,

 σ -compact and noncompact, there exists $h \in C(X)$ such that $\hat{h}(\xi) = \infty$, for every $\xi \in \beta X \setminus X$; now if $A \subset C(X)$ is a unital subalgebra closed under bounded inversion and A contains a function h with this property, then Hom A = X.

On the other hand, Proposition 1.3 certainly applies to algebras which are not inverse-closed, as the following example shows. We recall that, with some technical modifications, an analogous example can be constructed for any realcompact non-pseudocompact space.

EXAMPLE 1.4. Let X be a locally compact, σ -compact, noncompact space. Consider $g_0 \in C(\beta X)$ such that $\beta X \setminus X = \{\xi \in \beta X : g_0(\xi) = 0\}$. Using the fact that $\beta X \setminus X$ is not a P-space (see [10]) it is possible to find $g_1 \in C(\beta X)$ and $\eta \in \beta X \setminus X$ so that $\eta \in Z = \{\xi \in \beta X \setminus X : g_1(\xi) = 0\}$ but Z is not a neighbourhood of η in $\beta X \setminus X$. Consider now the function $g = (g_0^2 + g_1^2)^{-1}|_{X}$, and note that $Z = \{\xi \in \beta X : \hat{g}(\xi) = \infty\}$. Now let A be the unital subalgebra of C(X) generated by g and A_n , that is:

$$A = \{ f_0 + f_1 g + \ldots + f_n g^n : f_0, f_1, \ldots, f_n \in A_{\eta} ; n \in \mathbb{N} \} .$$

The algebra A has the following properties:

- (1) A is closed under bounded inversion.
- (2) For each $\xi \in \beta X \setminus X$ there exists $f \in A$ such that $\hat{f}(\xi) = \infty$.
- (3) Hom A = X.
- (4) If $h \in C(X)$ satisfies $\hat{h}(\xi) = \infty$, for every $\xi \in \beta X \setminus X$, then $h \notin A$.
- (5) A is not inverse-closed.

Now suppose that in Proposition 1.3 the condition on A is not fulfilled, i.e., there exists $\xi \in \beta X \setminus X$ such that $\hat{f}(\xi) \neq \infty$ for every $f \in A$. Then consider the algebra homomorphism δ_{ξ} on A defined by $\delta_{\xi}(f) = \hat{f}(\xi)$ for every $f \in A$. Suppose that, in addition, A separates points and closed sets of X (that is, if $C \subset X$ is closed and $a \in X \setminus C$, there exists $f \in A$ such that $f(a) \notin \overline{f(C)}$). Then δ_{ξ} is not given by evaluation at any point of X. Summarizing, we have the following.

THEOREM 1.5. Let X be a completely regular space and let $A \subset C(X)$ be a subalgebra with unit, closed under bounded inversion, which separates points and closed sets of X. Then the following are equivalent:

- (i) Hom A = X.
- (ii) For each $\xi \in \beta X \setminus X$ there exists $f \in A$ such that $\hat{f}(\xi) = \infty$.

Next we give a simple application for algebras of continuous functions over

an arbitrary product of real lines.

COROLLARY 1.6. Let $X \subset \mathbb{R}^I$ be a closed set and let $A \subset C(X)$ be a subalgebra with unit, closed under bounded inversion. Suppose that $\pi_i|_X \in A$ for each projection $\pi_i : \mathbb{R}^I \longrightarrow \mathbb{R}$ $(i \in I)$. Then Hom A = X.

We have also the following:

PROPOSITION 1.7. Let X be a realcompact space and let $A \subset C(X)$ be a subalgebra with unit, closed under bounded inversion. If A is uniformly dense in C(X), then Hom A = X.

Now Corollary 1.8 below can be obtained as an easy consequence of Proposition 1.7 and the results of Garrido-Montalvo [9] on uniform density (see also [1]). This Corollary extends Theorem 3.2 of [18] and Theorem 2 of [14]. First recall that a zero-set in X is a set of the form $Z(f) = f^{-1}(0)$, for some $f \in C(X)$. Also, for $f \in C(X)$ we denote $coz(f) = X \setminus Z(f)$.

COROLLARY 1.8. Let X be a realcompact space and let $A \subset C(X)$ be a subalgebra with unit satisfying:

- (i) A is closed under bounded inversion.
- (ii) If $Z_0, Z_1 \subset X$ are (nonempty) disjoint zero-sets, then there exists $f \in A$ such that $f(Z_0) = 0$ and $f(Z_1) = 1$.
- (iii) If (f_n) is a sequence of functions in A such that $coz(f_n) \cap coz(f_m) = \emptyset$ for |n-m| > 1, then $\sum_{n=1}^{\infty} f_n \in A$.

Then A is uniformly dense in C(X), and therefore Hom A = X.

Our next result follows the lines of Theorem 1 of [11].

PROPOSITION 1.9. Let X be a completely regular space and let $A \subset C(X)$ be an inverse-closed subalgebra with unit.

- (1) Suppose that $(f_n) \subset A$ is a sequence such that, for every summable sequence (α_n) of positive numbers, $\sum_{n=1}^{\infty} \alpha_n f_n$ and $\sum_{n=1}^{\infty} \alpha_n f_n^2$ belong to A. Then for each $\varphi \in Hom A$ there exists $a \in X$ such that $\varphi(f_n) = f_n(a)$ for all n.
- (2) Suppose that, in addition, (f_n) separates the points of X. Then Hom A = X.

2. FUNCTIONS ON BANACH SPACES

We now turn our attention to the case of functions over a real Banach space E. Let $\mathcal{P}(E)$ denote the algebra of all continuous polynomials on E and,

for $j=0,1,2,\ldots$, let $\mathcal{P}({}^{j}E)$ denote the space of all continuous j-homogeneous polynomials on E. That is, each $P_{j}\in\mathcal{P}({}^{j}E)$ is a function of the form $P_{j}(x)=T_{j}(x,\ldots,x)$, where T_{j} is a continuous j-linear functional on $E\times\ldots\times E$ (thus for j=0, P_{0} is constant), and each $P\in\mathcal{P}(E)$ is a finite sum $P=P_{0}+P_{1}+\ldots+P_{m}$, where $P_{j}\in\mathcal{P}({}^{j}E)$ for $j=0,1,2,\ldots,m$. Recall that a function f defined on an open subset U of E is said to be real-analytic on U if, for every $x\in U$ there exist a neighbourhood W of 0 in E and a sequence (P_{j}) with each $P_{j}\in\mathcal{P}({}^{j}E)$, such that $f(x+h)=\sum_{j=0}^{\infty}P_{j}(h)$, for every $h\in W$. Now let Ω be any subset of E. We denote by $\mathcal{R}(\Omega)$ the algebra of all rational functions on Ω , that is, the functions of the form P/Q, where $P,Q\in\mathcal{P}(E)$ and $Q(x)\neq 0$ for every $x\in\Omega$. Also, we denote by $\mathcal{A}(\Omega)$ (respectively, $C^{m}(\Omega)$, $1\leqslant m\leqslant\infty$) the algebra of all real functions on Ω which can be extended to a real-analytic function (respectively, an m-times continuously Fréchet differentiable function) on an open subset of E containing Ω . Note that $\mathcal{R}(\Omega)\subset\mathcal{A}(\Omega)\subset C^{m}(\Omega)$, and they are inverse-closed subalgebras of $C(\Omega)$.

We start with special case of the separable Hilbert space $E = \ell_2$.

PROPOSITION 2.1. Let $A \subset C(\ell_2)$ be an inverse-closed subalgebra with unit. Suppose that A contains the dual space ℓ_2^* and the polynomials $P(x) = \sum_{n=1}^{\infty} x_n^2$ and $Q(x) = \sum_{n=1}^{\infty} s_n x_n^2$, where (s_n) is a given summable sequence of positive numbers. Then $Hom A = \ell_2$.

REMARK 2.2. Let E be a real Banach space such that there exists a sequence $(\psi_n) \subset E^*$ of norm-one functionals separating the points of E (for example, if E is separable or E is the dual of a separable space). Consider any set $\Omega \subset E$ and let $A \subset C(\Omega)$ be an inverse-closed subalgebra with unit. Suppose that A contains the dual E^* and the polynomials $P = \sum_{n=1}^{\infty} r_n^2 \psi_n^2$ and $Q = \sum_{n=1}^{\infty} s_n r_n^2 \psi_n^2$, where (r_n) and (s_n) are two summable sequences of positive numbers. Then it can be shown using Proposition 2.1 that $Hom A = \Omega$.

Next we give our main result. First recall that a set Γ is said to have nonmeasurable cardinal if there exists no nontrivial two-valued measure defined on the power set of Γ (see e.g. [10] or [16]).

THEOREM 2.3. Let Ω be any subset of a real Banach space E such that there exists a continuous, linear, one-to-one operator from E into $\ell_p(\Gamma)$, for some p, $(1 and some index set <math>\Gamma$ of nonmeasurable cardinal. Suppose that

 $A \subset C(\Omega)$ is an inverse-closed subalgebra, such that $P|_{\Omega} \in A$ for every $P \in \mathcal{P}(E)$. Then $Hom A = \Omega$.

In particular $\operatorname{Hom} \mathcal{R}(\Omega) = \operatorname{Hom} \mathcal{A}(\Omega) = \operatorname{Hom} C^m(\Omega) = \Omega, (1 \leqslant m \leqslant \infty).$

REMARKS 2.4. (1) The hypothesis on E in Theorem 2.3 is satisfied if E is a separable space, or E is the dual of a separable space, or, more generally, if E is a closed subspace of C(K), where K is a compact, separable space.

- (2) Recall that super-reflexive Banach spaces can be defined as those spaces admiting an equivalent uniformly convex norm (see for instance [7]). It follows from ([17], Lemma 9) that the hypothesis on E in Theorem 2.3 is also satisfied whenever E is a super-reflexive space with nonmeasurable cardinal.
- (3) The requirement on the cardinality of Γ in Theorem 2.3 is very mild, since in fact it is not known whether measurable cardinals exist. On the other hand, if we suppose that Γ has measurable cardinal, it follows that $E = \ell_2(\Gamma)$ is not realcompact (see [10]). In this case let vE denote the Hewitt-Nachbin realcompactification of E. Now if $A \subset C(E)$ is a subalgebra as in Theorem 2.3, each point $\xi \in vE \setminus E$ gives a homomorphism $\varphi(f) = \hat{f}(\xi)$ on A which is not given by evaluation at any point of E.
- (4) In Theorem 2.3 we cannot change the condition "A is inverse-closed" by "A is closed under bounded inversion". Consider as an example $E = \ell_2$, let Ω be the open unit ball of E and define

$$A = \{ P/Q : P, Q \in \mathcal{P}(\ell_2) \text{ with } \inf_{x \in \Omega} |Q(x)| > 0 \}.$$

Then $A \subset C(\Omega)$ is a subalgebra with unit, closed under bounded inversion, which contains every polynomial function on Ω . Now let $\xi \in \beta \Omega \setminus \Omega$. Then the algebra homomorphism $\varphi(f) = \hat{f}(\xi)$ on A is not given by evaluation at any point of Ω .

The result of Theorem 2.3 does not hold for arbitrary Banach spaces, as the following example shows. An analogous example can be seen in [12].

EXAMPLE 2.5. Let $E=c_0(\Gamma)$ and let $\Omega=c_0(\Gamma)\setminus\{0\}$, where Γ is uncountable. Then:

- (1) For every real-analytic function $f: \Omega \to \mathbb{R}$, there exists $\lim_{x\to 0} f(x)$.
- (2) The algebra homomorphism $\varphi: \mathcal{A}(\Omega) \longrightarrow \mathbb{R}$ defined by $\varphi(f) = \lim_{x \to 0} f(x)$ is not given by evaluation at any point of Ω .

Let Ω be an open subset of $c_0(\Gamma)$, where Γ is uncountable. Since $c_0(\Gamma)$ admits C^{∞} -partitions of unity (see [20]), it follows from Corollary 1.8 that

 $\operatorname{Hom} C^{m}(\Omega) = \Omega$ (see also [14]). However, in the case of real-analytic functions the situation is different. In fact, combining Example 2.5 with Theorem 2.6, we can see that the shape of Ω plays a role.

THEOREM 2.6. Let Ω be an open ball of $c_0(\Gamma)$, or let $\Omega = c_0(\Gamma)$. Suppose that $A \subset \mathcal{A}(\Omega)$ is an inverse-closed subalgebra, such that $P_{|\Omega} \in A$ for every $P \in \mathcal{P}(c_0(\Gamma))$. Then $Hom A = \Omega$.

REFERENCES

- ANDERSON, F.W. Approximation in systems of real-valued continuous functions, 1. Trans. A.M.S. 103 (1962), 249-271.
- 2. ARIAS DE REYNA, J. A real-valued homomorphism on algebras of differentiable functions, Proc. A.M.S. 104 (1988), 1054-1058.
- 3. BISTRÖM, P., BJON, S. AND LINDSTRÖM, M. Remarks on homomorphisms on certain subalgebras of C(X), Math. Japonica 36 (1991).
- BISTRÖM, P., BJON, S. AND LINDSTRÖM, M. Homomorphisms on some function 4. algebras, Monat. Math. 111 (1991), 93-97.
- 5. BISTRÖM, P., BJON, S. AND LINDSTRÖM, M. Function algebras on which homomorphisms are point evaluations on sequences, Manuscripta Math. **3** (1991), 179 – 185.
- 6. BISTRÖM, P. AND LINDSTRÖM, M. Homomorphisms on $C^{00}(E)$ and C^{00} bounding sets, To appear in Monat. Math.
- DIESTEL, J. "Geometry of Banach spaces. Selected topics", L.N.M. Springer - Verlag (1975).
- GARRIDO, M.I., GÓMEZ GIL, J. AND JARAMILLO, J.A. Homomorphisms 8. functions algebras, Preprint.
- 9. GARRIDO, M.I. AND MONTALVO, F. Uniform approximation theorems for real-valued continuos functions, Topology and Appl. 45 (1992), 145-155.

 GILLMAN, L. AND JERISON, M. "Rings of continuous functions", Princeton,
- 10. New Jersey (1960).
- 11. GÓMEZ GIL, J. AND LLAVONA, J.G. Multiplicative functionals on function algebras, Revista Matemática Univ. Complutense de Madrid 1 (1988), 19-22.
- 12. HIRSCHOWITZ, A. Sur le non-plongement des varietés analytiques banachiques réeles, C.R. Acad. Sci. Paris 269 (1969), 844-846.
- 13. JARAMILLO, J.A. Álgebras de funciones continuas y diferenciables. Homomorfismos e interpolación, Thesis, Univ. Complutense, Madrid (1987).
- 14. JARAMILLO, J.A. Multiplicative functionals on algebras of differentiable functions, Arch. der Math. 58 (1992), 384-387.
- JARAMILLO, J.A. AND LLAVONA, J.G. On the spectrum of $C_h^1(E)$, Math. Ann. 15. **287** (1990), 531-538.
- JECH, T. "Set theory", Academic Press (1978).
- JOHN, K., TORUNCZYK H. AND ZIZLER V. Uniformly smooth partitions of unity on superreflexive Banach spaces, Studia Math. 70 (1981), 129-137.
- 18. KRIEGL, A., MICHOR, P. AND SCHACHERMAYER, W. Characters on algebras of smooth functions, Ann. Global Anal. Geom. 7 (1989), 85-92.
- 19. MICHAEL, E.A. "Locally multiplicatively-convex topological algebras", Memoirs of the A.M.S. 11 (1952)
- SUNDARESAN, K. AND SWAMINATHAN, S. "Geometry and nonlinear analysis in 20. Banach spaces ", L.N.M. 1131, Springer-Verlag (1985).