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In his seminal paper of 1968, [5], H.E. Warren used techniques from real
algebraic geometry (counting the number of connected components of an algebraic
set) to show lower bounds for approximations of compact classes of continuous
functions. More concretely, this author studied lower bounds for the deviation of
K from F, D(K,F), where K, F are subsets of the Banach algebra (C(M),|.|lx),
of continuous functions on a compact topological space M. The deviation
D(K,F), for a compact subset K of C(M), measures the precision to which F
approximates K and it is defined by

D(K,F) = supgex {infrer ||/~ 9llo}

Let U be an open semialgebraic subset of R®. A Nash function on U is a
C®—semialgebraic function or, equivalently, a C¥—function, algebraic over the
ring of polynomials R[Xj,...,X,]. In the sequel, N(U) denotes the ring of Nash
functions over U.

The complexity of an element ¢ € N(U) is defined as the minimum degree
of all non zero polynomials p(Ty,...,T,,Y) € R[Ty,...,T,,Y] such that the graph
of ¢ : U— R is contained in the algebraic set:

{(zlr")zn )y) € IR’HI : p(zl))zn 7y) = 0}

Assume M to be a compact space and a continuous function & :[R"XM
— R. We define the family of continuous functions over M parametrized by ¢
by fixing the coordinates in R™ as

F(®):={®(z,-): M— R : zeR"}
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We shall say that the family of functions F(®) has Nash specializations of
complexity <d if the functions &(—,y):R*— R are Nash functions of
complexity bounded by d. These families of functions strictly include those used
in [5] to obtain lower bounds for Stone—Weierstrass.

In terms of algebraic complexity theory, the non—scalar cost of a semi-
algebraic function f: A—— B, where A ¢ R? and B € R? are semialgebraic sets,
is defined as the maximum number of non—scalar operations needed to determine
if a given point z € RP*¢ belongs to the graph of f. Recall from [2] that a
non—scalar operation is either a test (i.e. a comparison of a rational function g
with 0 of the type ¢ >0, ¢ >0, g =0) or an arithmetical operation € {x,+}
not involving constants if it is a product x, without constant denominator if it is
a division +.

For non—negative integers n,d € N and a compact subset K of C(M) we
shall denote by

A, 4(K) :=inf{D(K, F(®))}

where F(®) runs over all families of functions with Nash specializations on R® of
complexity <d.

Observe that A, (K)<Dpq4(K), where D,g4(K) is the invariant
introduced in [5].

Our research for lower bounds of A, 4(K) leads to the following

DEFINITION. For a compact subset K of C(M) and a non—negative
integer m €N, the invariant R(K,m) will be defined as the supremum of all real
numbers a € R, @ >0, such that there are points y,..., Y, € M satisfying:

For every sign sequence ¢ = (€g,...,6,,) € {—1,+1}™ there is fin K such
that ¢f(y;)>afor i=1,..,m.

THEOREM. For any compact space M and for any compact subset K of
C(M) we have for d >2

An,d(K) > N(K1 m)

for every m >([8(n+1)(2n—1)logad] + 1, where [8(n+1)(2n—1)logyd] is the
greatest integer in the real number 8(n+1)(2n—1)logyd.

Now, for K and m as in the definition above, we measure the fact that K
contains functions of arbitrary oscillation about zero on (zi,...,3,) € M™ by



LOWER BOUNDS FOR APPROXIMATIONS 67

means of
QUK 21,18m) = Mingm 1 {5UD ek {miny <im {61015} 1}
and from Theorem 2.2, noting as in [5] that Q(K,z,,...,5,) < N(K,m), we get
COROLLARY. Under the above notations, for d >2
D, (K) > K, m) := sup{Q(K,31,-...30) : (21,-.,3) € M™}
for every m >[8(n+1)(2n—1)logyd] + 1.

COROLLARY. Under the above notations, if M c R* is a Nash submanifold
and ¢ :R* XM — R is a Nash function of non—scalar cost < h we have:

D(K,F(®)) >N(K,m)
for every m >16(n+1)(2n—1)h + 1.

The proof of the main theorem is shown using close techniques to that used
by H.E. Warren and H.S. Shapiro (see [4]), by looking for upper bounds to the
cardinal of the set

{ee{-L,+1}" : sgnc(p) +@}

where ¢ = (¢1,.-,¢,) is a Nash mapping ¢ :R*— R™, € = (€1,...,6,) €
{-1,+1}™ are the sign conditions and sgn.(y) is the semialgebraic set given by
{z € R™ : sgn y;(z) = ¢;}. This is done noting that this number is less than or
equal to the number of connected components of

m
R — U, {z €R" : p(z) =0}

and using a version of Milnor—Thom’s theorem for Nash functions shown in [3].
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