Dimension of Quasi-Metrizable Spaces and Bicompleteness Degree

SALVADOR ROMAGUERA AND JUAN TARRÉS

Escuela de Caminos, Univ. Politécnica, 46071 Valencia, Spain Facultad de Matemáticas, Ciudad Universitaria, 28040 Madrid, Spain

AMS Subject Class. (1991): 54E55, 54F45

Received February 11, 1993

In [1] J.M. Aarts introduced the notion of strong inductive completeness degree and characterized those metrizable spaces X which have a completion Y with $\dim(Y\setminus X)\leqslant n$. Recall that a topological space X has a strong inductive completeness degree -1, $\operatorname{Icd} X=-1$, if X is Čech complete. If for any two disjoint closed subsets F and G of a space X there exists an open set U such that $F\subseteq U\subseteq X\setminus G$ and $\operatorname{Icd} B(U)\leqslant n-1$ (B(U) denotes the boundary of U), then X has strong inductive completeness degree $\leqslant n$, $\operatorname{Icd} X\leqslant n$. $\operatorname{Icd} X\leqslant n$ and $\operatorname{Icd} X\leqslant n$ for each n, then $\operatorname{Icd} X=\infty$.

THEOREM 1. (Aarts [1]) A metrizable space X has a completion Y with $\dim(Y \setminus X) \leq n$ if and only if $\operatorname{Icd} X \leq n$.

This note extends Aarts' theorem to quasi-metrizable spaces. Our result is applied to some relevant nonmetrizable quasi-metrizable spaces as the Sorgenfrey line and the Michael line.

Our terminology is standard (see [2]).

A quasi-pseudometric on a set X is a nonnegative real-valued function d on $X\times X$ such that for all $x,y,z\in X$: (i) d(x,x)=0 and (ii) $d(x,y)\leqslant d(x,z)+d(z,y)$. If d satisfies the additional condition (iii) $d(x,y)=0 \Leftrightarrow x=y$, then d is called a quasi-metric on X. If d is a quasi-(pseudo)metric on X, then the function d^{-1} , defined on $X\times X$ by $d^{-1}(x,y)=d(y,x)$, is a quasi-(pseudo)metric on X called conjugate of d. Thus, the quasi-(pseudo)metric d generates a (pseudo)metric d^* on X defined by $d^*(x,y)=\max\{d(x,y),d^{-1}(x,y)\}$. (d is called separating if d^* is a metric on X).

Supported in part by DGICYT grant PB89-0611

Each quasi-pseudometric d on X also generates a topology T(d) on X which has as a base the family of d-balls $\{B_d(x,r):x\in X,\,r>0\}$ where $B_d(x,r)=\{y\in X:d(x,y)< r\}$. A topological space (X,T) is called quasi-(pseudo)metrizable if there is a quasi-(pseudo)metric d on X such that T=T(d). In this case we say that d is compatible with T.

Bitopological spaces appear in a natural way when one considers the topologies T(d) and $T(d^{-1})$ induced by a quasi-pseudometric d and its conjugate d^{-1} . A bitopological space is [3] an ordered triple (X,P,Q) such that X is a nonempty set and P and Q are topologies on X. (X,P,Q) is called (separated) quasi-(pseudo)metrizable if there is a (separating) quasi-(pseudo)-metric d on X such that T(d)=P and $T(d^{-1})=Q$. In this case we say that d is compatible with (P,Q).

A quasi-pseudometric d on a set X is called bicomplete [2],[5], if d^* is a complete pseudometric on X. A quasi-pseudometrizable space (X,P,Q) is called bicompletely quasi-pseudometrizable if it has a compatible bicomplete quasi-pseudometric.

A separated bicompletion of a separated quasi-pseudometrizable space (X,P,Q) is a separated bicompletely quasi-pseudometrizable space (Y,P',Q') such that X is a (P'VQ')-dense subset of Y and P'|X=P and Q'|X=Q.

It is well-known [2],[5], that every separated quasi-pseudometrizable bitopological space has a separated bicompletion.

Let (X,P,Q) be a topological space such that $(X,P\vee Q)$ is a Tychonoff space. We say that $\dim X \leq n$ if $\dim (X,P\vee Q) \leq n$. Similarly, we say that $\operatorname{Icd} X \leq n$ if $\operatorname{Icd}(X,P\vee Q) \leq n$.

THEOREM 2. A separated quasi-pseudometrizable space (X,P,Q) has a separated bicompletion (Y,P',Q') with $\dim(Y\setminus X)\leqslant n$ if and only if $\operatorname{Icd} X\leqslant n$.

Proof. We sketch the proof. Let (X,P,Q) be a separated quasi-pseudo-metrizable space such that $\operatorname{Icd} X = -1$. Then $(X,P\vee Q)$ is a metrizable Čech complete space and, hence, a completely metrizable space. In [4, Theorem 1] it is proved that a separated quasi-pseudometrizable space (X,P,Q) is bicompletely quasi-pseudometrizable if and only if $(X,P\vee Q)$ is completely metrizable. Hence Y=X. Now suppose $\operatorname{Icd} X=n\geqslant 0$. Take any quasi-pseudometric d on X compatible with (P,Q). Then, there exists a separating bicomplete quasi-pseudometric d' on a set X' such that X is a $T((d')^*)$ -dense subset of X' and

d'|X=d ([2],[5]). By [1, Proof of Theorem 1.2] there is a subset Y of X' such that $(Y,(d')^*)$ is a complete metric space, X is $T((d')^*)$ —dense in Y and $\dim(Y\setminus X) \leq n$. Consequently, $(Y,T(d'),T((d')^{-1}))$ is the required separated bicompletion of (X,P,Q). The converse follows immediately from Theorem 1.

Remark. Note that if $0 \le \operatorname{Icd} X \le n$, the proof given in Theorem 2 actually shows that each separated bicompletion (Y,P',Q') of (X,P,Q) satisfies $\dim (Y \setminus X) \le n$.

EXAMPLE 1. Let \mathbb{R} be the set of real numbers and let d be the quasimetric defined on \mathbb{R} by d(x,y)=y-x if $x \leq y$ and d(x,y)=1 if x>y. Then T(d) is the Sorgenfrey line on \mathbb{R} . Since d^* is the discrete metric on \mathbb{R} it follows that d is a bicomplete quasi-metric on \mathbb{R} . Thus $\operatorname{Icd} X=-1$ where $X=(\mathbb{R},T(d),T(d^{-1}))$.

EXAMPLE 2. Let $\mathbb Q$ be the set of rational numbers. Define a quasi-metric d on $\mathbb R$ as follows: $d(x,y)=\min\{|x-y|,1\}$ if $x\in\mathbb Q$, d(x,y)=1 if $x\in\mathbb R\setminus\mathbb Q$ and $x\neq y$, and d(x,x)=0 for all $x\in\mathbb R$. Then T(d) is the Michael line on $\mathbb R$. Obviously, d is not bicomplete. However $\mathrm{Icd}\mathbb R=0$ whenever P=T(d) and $Q=T(d^{-1})$. Therefore $(\mathbb R,P,Q)$ has a separated bicompletion (Y,P',Q') with $\dim(Y\setminus\mathbb R)=0$.

EXAMPLE 3. Let d be the separating quasi-pseudometric on \mathbb{R} , defined by $d(x,y) = \max\{y-x,0\}$. Then $d^*|\mathbb{Q}$ is the usual metric on \mathbb{Q} and, hence, d is not bicomplete. By Theorem 2 $(\mathbb{Q}, T(d), T(d^{-1}))$ has a separated bicompletion Y such that $\dim(Y/\mathbb{Q}) = 0$ since $\operatorname{Icd} \mathbb{Q} = 0$.

EXAMPLE 4. Let \mathbb{Q} and \mathbb{R} endowed with the bitopology induced by the quasi-pseudometric d of the preceding example. Then $\operatorname{Icd}(\mathbb{Q} \times \mathbb{R}^n) = n$ (see [1, page 29]).

REFERENCES

- 1. AARTS, J.M., Completeness degree (a generalization of dimension), Fund. Math. 63 (1968), 27-41.
- FLETCHER, P. AND LINDGREN, W.F., "Quasi-Uniform Spaces", Marcel Dekker, New York, 1982.
- 3. KELLY, J.C., Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.
- 4. ROMAGUERA, S. AND SALBANY, S., On bicomplete quasi-pseudometrizability, Topology Appl., to appear.
- SALBANY, S., Bitopological spaces, compactifications and completions, Math. Monographs Univ. Cape Town 1 (1974).