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Motivated by problems in infinite dimensional representations of groups and
the mathematical foundations of quantum mechanics, Murray and von Neumann
initiated the study of rings of operators in 1936. In their famous work [19], they
introduced the concept of a factor and gave the classification theory of factors. To
be precise, they classified them as type I (type I,, n €N or type Ig), type 1l
(type Iy or type II,) and type III. Even though they presented a general method
to construct factors of type I and IT in [19], at that time they could not ascertain
the existence of any type III-factors at all. Later in 1940, von Neumann modified
the earlier construction and gave some examples of type III factors in [25]. Thus
by 1940, examples of factors of all types had been provided and the race was on.
In 1943, Murray and von Neumann gave examples of two distinct type
11, -factors, distinct in the sense that they are non-isomorphic.

By the mid fifties, Pukansky constructed two non-isomorphic type
III-factors in [28]. In the period 1963-1968, many mathematicians took up the
construction of new type II;-factors and only nine distinct type II,-factors were
known before 1969, when Dusa McDuff constructed a continuum of distinct type
II;-factors in her famous memoir [18].

Earlier, in 1967, using the type IIl-factors of Pukansky [28], Powers [27]
constructed a continuum of distinct type III-factors. Later in 1970, Sakai gave the
construction of a continuum of type II—factors.

The results of Powers motivated the work of Araki and Woods [2] on infinite
tensor products of type I-factors, which, in turn, played a crucial role in
motivating the study of Connes [6]. Making use of the Tomita-Takesaki theory of
modular Hilbert algebras, Connes, in his famous memoir [6] which won him the
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Fields medal for that decade, classified all type IlI-factors in terms of type
I -factors for A €[0,1]. (In this context, we should not fail to mention that
Takesaki [36] independently obtained the structure theorem for the more general
type III-von Neumann algebras.)

The aim of this survey is to discuss some of these important discoveries in
the classification of factors of von Neumann algebras. Our hoped-for audience is
the general abstract analyst; our aim, to perphaps make the treatment of the
subject in texts and monographs less intimidating.

1. DEFINITION OF A FACTOR

Throughout the article we restrict our attention to operators acting on a
separable infinite dimensional complex Hilbert space H, unless otherwise
mentioned. L(H) denotes the Banach algebra of all operators on H equipped
with the operator norm with composition as the multiplication. A subalgebra .4
of L(H) is called a *-subalgebra if T* € ¢ for each T €.£. A *—subalgebra .4
of L(H) closed for the norm topology is called a C*-algebra.

The inner-product of a Hilbert space is denoted by < -,->. Isomorphisms
between Hilbert spaces are isometric surjections and hence are surjections which
preserve the inner-product.

For TeL(H) and z,y€H, let p, (T)=|<Tz,y>|. Then the locally
convex topology T, defined by the seminorms {p,, : z,y € H} is called the weak
operator topology and it is weaker than the norm topology of L(H). It is well
known that these two topologies coincide if and only if H is finite dimensional.

A T1y,-closed *-subalgebra % with identity of L(H) is called a wvon
Neumann algebra. Note that a von Neumann algebra is necessarily a C*-algebra
with identity.

Historically, von Neumann introduced this class of operators in [23] and
called it a ring of operators. But later, at Dieudonné’s suggestion, they became
known as von Neumann algebras (see Introduction to [9]).

For the general theory of von Neumann algebras, the classic reference is [9].
However, a thorough introduction can be found in Chapter VII of [22]; [26]
proceeds at a more pedantic pace, but provides the basic facts of von Neumann
algebras as well.

Given a *-subalgebra # of L(H), theset {T€ L(H): TR=RT,Re R}
is called the commutant of % and is denoted by £’. The commutant ( 2’)" of
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R’ is called the double commutant of % and is denoted by £”. For a
*subalgebra £ of L(H), it is easy to observe that 2’ is a 7,-closed
* subalgebra of L(H), containing the identity operator and hence is a von
Neumann algebra.

Thanks to the double commutant theorem (due to von Neumann [23)), it is
possible to describe a von Neumann algebra with no topological ingredient. In
fact, this is the approach adopted by Dixmier in [9].

THEOREM 1.1 (THE DOUBLE COMMUTANT THEOREM). A *-subalgebra
R of L(H) is a von Neumann algebra if and only if R = R”.

Motivated by certain problems in quantum mechanics and the theory of
infinite dimensional representations of groups, Murray and von Neumann made
an extensive study of operator algebras in [19]. In that context, they were led to
the notion of a factor of a von Neumann algebra and to the classification of fac—
tors as type L,, n €N, type I, type II;, type 11, and type III. In the first paper
[19] in 1936, they gave a general method for constructing type I- and II-factors
and thus obtained some examples of these. But, as they pointed out explicity in
[19], they were not aware of the existence of any type III-factors at that time.

To give the definition of a factor, we proceed as follows. Suppose & is a
nonvoid subset of L(H). Let R(¥) be the smallest von Neumann algebra in
L(H), which contains #. Since L(H) itself is a von Neumann algebra and the
intersection of a nonvoid family of von Neumann algebras is a von Neumann
algebra, obviously R(%) is well defined. R(¥) is called the von Neumann algebra
generated by %. Let T be the class of all von Neumann algebras on H. If we
partially order £ by inclusion, then L(H) and CI are respectively the greatest
and the smallest elements in ¥, where [ is the identity operator on H. Given
Ry, Ry in T, the supremum RX; V R, and the infimum £, A R,, of R,
and %4, with respect to this partial ordering, exist in ¥ and are given by

RV Ry =R(Rq, Ry)
RLARy = R0 Ry
Clearly, we have
(R1V R)' = R{ARS . (1)

Now, by the double commutant theorem we also have
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(521/\-%2)’= 2{V5£§ .

A, and R, are said to form a factorisation if £; and 2, commute
elementwise and £,V R, = L(H). The notion of factors arises then as a
particular case of factorisation and is given as follows:

DEFINITION 1.1. For £ € X, suppose &V £’= L(H) so that £ and
%’ form a factorisation. Then 2 is called a factor.

If £ is a factor, then by the double commutant theorem £’ is also a
factor. Moreover, as (L(H))’=CI, by (1) and Theorem 1.1 a von Neumann
algebra & on H is a factor if and only if its centre (namely, £ n #’)is CI.

Before ending this section, it is worth noting that all the definitions and
results given above for *-algebras of operators on H also hold when H is of
arbitrary dimension.

2. RELATIVE DIMENSION FUNCTION OF A FACTOR

Given a factor M on H, we construct a relative dimension function Dy of
M and use the range of Dy to classify M as type I, IT or III. We prefer to use the
relative dimension functions of a factor to describe the classification instead of the
normal trace, since this approach is more direct and elementary. The definitions
and results mentioned in this section are found in [19, 22].

Throughout this section M denotes a factor on H and P(M) is the set of all
projections belonging to M. Moreover, H can be a unitary space or a separable
Hilbert space.

For two projections F and F on H, it is natural to consider £ to be smaller
than F in size if dim EH < dim FH, where dim denotes the dimension of the
subspace. Clearly, this is equivalent to saying that there exists a linear isometry
U from EH onto a closed subspace of FH. On extending U linearly to the whole
of I by defining U(H © EH) =0, we observe that dim EH < dim FH if and only
if there exists a partial isometry U € L(H) with its initial domain EH and final
domain a closed subspace of FH. This observation leads to the following:

DEFINITION 2.1. For E,F € P(M), we write E $ F if there exists a partial
isometry U €M with its initial domain EH and final domain F;H, where
FyeP(M) and Fi < F. If F{ =F, then we write E~F. If EXF and E-F is
not true, then we write E $ F or simply, E<F. Obviously, “~” is an
equivalence relation on P(M).
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In other words, for projections E and F in P(M), we say E 3 F if and only
if there exists a partial isometry U € M such that U*U = E and UU* = F; < F.

Note that dim EH = dim FH, if E ~ F. But the converse is not necessarily
true since dim EH =dim FH does not guarantee the existence of a partial
isometry U € M for which U*U = E and UU* = F hold.

Now we can state the following result on X.

THEOREM 2.1. For E,FeP(M), EXF and FiE imply E-F.
Moreover, given E,F € P(M), one and only one of the relations E<F, E - F, or
F < FE holds.

Analogous to the concepts of finite and infinite sets in set theory, E € P(M)
is said to be finite (relative to M), if E« F for any subprojection F of E
belonging to M; ie. if E~FE and Fe P(M), then F=E. E is said to be
infinite (relative to M), if it is not finite. In this case, there exists an F € P(M)
such that £~ F ;E

The following lemma of [19] gives the basis for the definitions of a funda—
mental sequence and a relative dimension of M. (See Definitions 2.2 and 2.3).

LEMMA 2.1. Let E,F € P(M), E+0 and F be finite. Then there ezists a
finite sequence {Gi}f of mutually orthogonal projections in M such that
(1) E”GI”G2"..."G
(i) ©PG; <F,
(i) F-XPG; < E.
Moreover, this number p ts uniquely determined by E and F, and is denoted
by [FIE].
Note that [F/E] € NU {0} and [F/E]=0if FXE.

p!

A projection E € M is said to be minimal if for any projection F ¢ M with
F < E we have F=0 or F=FE. Since these projections behave differently, they
are treated in a special way as in the following definition.

DEFINITION 2.2. Let & ={E,E,,... } be an infinite sequence in P(M)
with each E; #0 and finite. If [E;/FE;,;] >2 for all 4, then & is said to be a
fundamental sequence in M. If E is a minimal projection in M, then also
S ={E} is called a fundamental sequence in M.

We note that the minimal projections are finite in M. In [19], Murray and
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von Neumann established that there exists at least one fundamental sequence in
‘M, whenever there exists a nonzero finite projection in M.

Given a fundamental sequence & in M, for two finite nonzero projections E
and Fin M is defined a positive real number (%) S by the following:

THEOREM 2.2. Let & ={E;}], be ¢ fundamental sequence in M and
E,F € P(M), E,F nonzero and finite, then

[F/E]
" (E/E;]

= (gr)g

lim
ezists as a positive real number, where by lim; we mean the value at i =1 when S

consists of a minimal projection .

The functional calculus for ( )
concept.

& s developed in [19], suggests the following
DEFINITION 2.3. A function D:P(M)— [0,00] is called a relative

dimension function of M if

(i) D()=0,

(i) E~F = D(E)=D(F),

(i) EF=0 = D(E+ F)=D(E)+ D(F),

for projections E,F in M.

If M has a nonzero finite projection E, we can construct a fundamental
sequence & in M by Lemma 8.13 of [19] and define a relative dimension function
Dy using (—g—)6 for F € P(M). More precisely, we have the following:

THEOREM 2.3. Let M be a factor on H. Then:

(i) Ifno nonzero finite prajection belongs to M, let

0 if F=0
Du(F)= _
oo if F e P(M), F+0.
If M has a nonzero finite projection E, let
0 if F=0
D —_— F - . .
M(F) = (_E_)C‘S if Fe PM), F+ 0 , F finite

00 if Fe P(M) and F isinfinite
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where & is a fundamental sequence in M. In this case, Dy is independent of the
fundamental sequence S used in the definition.
In both cases Dy thus defined is a relative dimension function of M.

(i1) If D’ is another relative dimension function of M, then D’ = cDyy for some
constant ¢ € (0,00).
(ii) ESF e Dy(E)S Dy(F), uhere B> F if FXE.
(iv) Therange A of Dy satisfies the following properties:
(a) Aclo0,00].
(b) 0OeA; supA=ty>0 and theA.
(C) FOTtl,tzEA t2>tl = t2—'t1€A
()If{t}chwzthE t; <tog=supA, then L7t €A.

(v) The only sets A, which satisfy (a)—(d) of (iv), are the following:

(I,):A={k6:k=0,1,...,n} forneN,0< 6 <o0.
(Iy) :A={ké:k=0,1,...,00}, 0< 6 <00.
() :A={t:0<t<ty},0<tg<o0.

(IIp) : A={t:0<t<00}.

(I1) : A = {0, 00}

If we normalise Dy by a suitable positive multiple (see (ii)) we can take
6=11n (I,) and (Ip) and to=1 in (IIy).

Then we have A ={0,1,...,n} for (I,); A={0,1,...,00} for (1) and
A={t:0<t <1} for (ILy).

By an isomorphism @ from .6 onto B, where £ and B are * -algebras,
we mean a *-isomorphism. If a *-algebra .4 satisfies a property (P) and if this
property (P) holds for an isomorphic image of .#, then we say that (P) is an
1somorphism invariant. It turns out that the range A of Dy is an isomorphism
invariant and hence is used for the classification of factors. We have the following:

DEFINITION 2.4. A factor M on H is said to be of type 1,,, n € N, type 1,
type 11, type 11, or type III according as the range A of the corresponding
normalised relative dimension function Dy of M is given by A ={0,1,...,n},
A={0,1,2,...,00}, A={t:0gt<g1l}, A={t:0<t<o0} or A={0,00},
respectively. When M is of type I, or I, M is said to be of {ype 1 or discrete;
when M is of type II; or II;, M is said to be of type II or continuous and finally,
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when M is of type ITI, M is said to be purely infinite. When M is not of type III,
M is said to be semi-finite.

Now we can state the following:

THEOREM 2.4. For a factor M on H only one of the types I, I, 111, 11
or I can occur. Moreover, any two isomorphic factors on separable Hilbert
spaces are of the same type. If M is a factor, then M is of type I (resp. of type II,
of type III) if and only if M’ is of the same type.

Note 2.1. The classification theory of Murray and von Neumann [19] has
been extended later to arbitrary von Neumann algebras £ on Hilbert spaces of
arbitrary dimension and accordingly, there exist unique mutually orthogonal
central projections P;,P, and P3 of # such that R P; is of type I if P; #0;
APy is of type II if P,+0 and RP3 is of type III if P3+ 0. Besides,
P, + Py + P3 =1 When P53 =0, & is said to be semi-finite; when P, is infinite,
R Py is said to be of type II. For details, the reader is referred to [9], [26], etc.

3. MATRIX REPRESENTATION OF AN OPERATOR

The results of this section play a crucial role in the sequel. Suppose
H=Y]®H;, where all the spaces H; are isomorphic to the fixed Hilbert space
H,. Then we can represent each T € L(H) as a matrix (Tj;) of operators in
L(H;) as folows.

Let U;:H — H; be an isomorphism. Considering H; as a closed
subspace of H, it is easy to observe that the adjoint U;* is a linear mapping from
H onto Hy such that U;*(H © H;) =0 and U;* maps H; isometrically onto H .
Consequently, U;*U; is the identity operator on H; and U;U;* is the projection
P; of H onto H;. For TeL(H), let T;;=U*TU;. Then Ty;: Hy— H; is
linear and || Ty;|l = | U*TU;| < IT||. Thus (7j;);; is a matrix of operators in
L(H,) such that || Tj;[ < [T for all 4,3

Conversely, suppose (T;;) is a matrix of operators Tj; € L(H;) such that
T;;= U;* TU; for some linear mapping T : H— H. Then, for z € H, we have

® ® .12 ® ] . 9 ® . )
Z B Tl = X U TP = X UF T =

_ 5 * 2 _ . 2 _ Tz )2
= 5 |usRef = B ATl = T2,
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since U;* is an isometry on H;.
Thus T € L(H) if and only if there exists a constant C > 0 such that

o m 9
I ||J.§1 Ti;Ui*z|” < C?||z |2 (1)

for z€ H. When (T;;) with T;;= U*TU; satisfies (1), we say that (Tj;) is
bounded.

Thus, the matrix (T;;) of operators Ty; € L(H;) with T;; = U*TU; for a
linear mapping T : H—— H is bounded if and only if T € L(H). In this case, T
is described as the matrix (7;) and it can be observed that

o o m ® o ® o
to= § 1pe = B 5 piars = B 001y = 55 om0
for ze€H. This shows that the correspondence T ~(7j;) is a bijective
correspondence from L(H) onto all bounded matrices (7;;) of operators
Tij € L(Hl), with T,] = U,*TU]

4. FACTORS OF TYPE I, n ¢ N AND I.

For a unitary space H of dimension n, L(H) is a type I,-factor. If H is
separable, then L(H) is a type Iy-factor.

If M is a type I, -factor on H, n € NU {oo}, then there exists an orthogonal
family {E;}7 of minimal equivalent projections in M such that L7 E; = I. Let
H;=FE;H For TeM’, let T~(T;;), with Tj; = Up;* TUy;, where the Uy; are
partial isometries in M with the initial domain H; and final domain H;. Since
TeM’, TE; = E;T and hence T is reduced by E;H. Let To= T|E{H. Then it
is easy to observe that Tj; =6;;Ty for i,5=1,2,...,n. Thus Ty~ (6;;Ty) (see
Section 3). Since M = M”, the factor M on the space H must consist of all
matrices A - (A;;) (bounded in the sense of Section 3, if n=o00) of operators
A;; = U} AUy € L(H;), which commute with all matrices of the form (§;;7),
where Ty= T|H, and TeM’. An operational calculus of these matrices
immediately shows that ToA;; = A;; T, for all 4,5 and hence A;; € (M'E;)’. But
(M’E})’ can be shown to coincide with E;M E; and hence M consists of all the
matrices of the form (4;;), with 4;; € E{ME; (and bounded, if n = c0). On the
other hand, by the spectral theorem, the von Neumann algebra £,ME, on H; is
the norm closure of the linear span of all the projections in E;M E;. Since E; is
a minimal projection, this shows that E;MFE; =CE;. Consequently, M=
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{(A4):A;; € and bounded if n=o0}. Thus there exists an isomorphism
U:H— T1®H, such that UAU = (4;;) = (},;) for A € M. Therefore, M is
isomorphic to L(K), where K ={(A;)] : }; €C, B7|X;|2< 00}

Thus we have proved the following:

THEOREM 4.1. Suppose M is a type I, factor on a unitary space H or on a
separable Hilbert space H with n € NU{oo}. Then there ezists a closed subspace
H, of H and an isomorphism V from H onto L7®H; such that VAV-1 = (Ai;)
= (A;j) for A € M. Consequently, M is isomorphic to L(K ), with dimK =n.

From the above theorem we observe that a factor of type I, is isomorphic to
L(K) with dim K = n, n € NU {oo}. Thus all factors of type I, (resp., of type I,
on a separable Hilbert space) are isomorphic to each other.

5. STRUCTURE THEOREM FOR TYPE II-FACTORS

Every type Il -factor can be obtained as the temsor product of a type
I, -factor and L(H,) for a suitable separable Hilbert space H,. In fact, suppose
M is a type II—factor on H. Then, by definition, there exists £ € P(M), E+ 0
and finite, such that EME is a type II;-factor on EH. Consequently, by a well-
knowm result on type II -factors there is an orthogonal sequence of projections
{£;}] in M such that I=%7FE, and E~E; - E5~ ... . Then H is isomorphic
to ETGBEH . Consequently, as discussed in Section 4, it can be shown that
M = {(4;;): A;;€ EME, and the matrix is bounded in the sense of Section 3}.
This matrix representation is written in the form M = EME ® L(H,) where
Hy={(X;)] : A; €C, B7|A;|2< 00} (see §2 of Chapter I of [9]). Thus we obtain
the following structure theorem of type Il ~factors:

THEOREM 5.1. Ewvery type Iy —factor M on a separable Hilbert space H 1is
of the form M, ® L(Hy) for suitable type I, -factor My, where Hy is a separable
Hilbert space.

Thus the study of type II;—factors is reduced to that of type II;-factors.

6. MEASURE THEORETIC CONSTRUCTION OF TYPE I- AND TYPE II-FACTORS

In [25] von Neumann modified the construction given earlier in [19] and
constructed factors of type I, II and III on a separable Hilbert space. Till the
appearance of [25] the existence of a type III-factor was unknown. In this section
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we follow [25] and limit our attention to the construction of type I- and type
II-factors only, while in the next section we shall take up the study of type
111 -factors.

Let (X,o’,u) be a o-finite measure space with x(X) >0 and let & be an
utmost countable subfamily of ¢ such that o is the o-algebra generated by ¢,
U{C:Ce¥}=X, and p(C)<oo for Ce¥. Further, we assume that for
z,y€ X such that ze E < y € E for all E€ &, then z=y. In the sequel, all the
measure spaces considered are supposed to satisfy the above assumptions.

DEFINITION 6.1. Let G be any utmost countable group. We say that G is
an (X, o, ) ~-group if the following conditions hold:
(i) For each ge G there exists a bijective map Ty:X—— X given by
Tyz = zg such that T-"zTgl: Tg2g1 for ¢,,9,€ G. (This implies T,z=1z and
(Ty) "z = T,z for z€X, where e is the identity of G).
(i) For AcX and for ge G, let Ag={zg:z€A}=Ty(A). Then Ace’
implies Ag € .
(iii) The measures p, on o defined by py(A)=pu(Ag) for A€o/ and ge G
are absolutely continuous with respect to u (i.e. pg << p for all g€ G).

The following definition is essential for the construction of factors.

DEFINITION 6.2. Let G be an (X, of,u)-group. We say that
(i) Gis free if g#+e and A ={z€ X : zg =1z}, then p*(4) =0, where p* is
the outer measure induced by g on 2(X);
(i1) G is ergodic if A €of, such that u(AgA A)=0 for all g€ G, implies that
either p(A4)=0 or p(X\4)=0;
(ili) G is measurable if there exists a o-finite measure v on of such that v =p
(iie. v<< p and p << v) and v(A)=v(Ag) forall A€o and ge G (i.e. v is
G-invariant); and

(iv) G is non-measurable if G is not measurable.

In the sequel, unless otherwise mentioned, G is assumed to be an utmost
countable (X, ¢, u)-group, which is free and ergodic.
Let
HE = {F(z,9): X x G— C such that F(-,g) is of-measurable
for each g€ G and EQEGfX |F(z,9)|%2du(z) < 0},

with the inner product given by
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<F1)F2> = EgeG'fx F](fl,g)Fzz.’E,g)dﬂ(I)-

Clearly, H{ =T,®L%(1). The hypotheses on (X,e#,u) imply that
L?(u) is nontrivial and separable. As G is utmost countable, H'? is either a
unitary space or a separable Hilbert space.

With the aim of constructing a factor we define certain linear transforma— -
tions on HF as below.

DEFINITION 6.3. Let F(-,-)e HY , go€ G and 9 be a bounded of-mea—

surable complex function on X. Let %l—‘:g be the Radon-Nikodym derivative of p g

with respect to u for g € G. Then we define:
dpg ()

(3) (T, F)(5,9) =

1/2
F(zg9,990);
L

(b) (Vg F')(z,9) = F(z, 959 );

wdﬂg_l(m)] 1/21"(1'9'1,9'1);
du

(d) (Ly F)(z,9) = ¥(2)F(z,9); and

(e) (My F)(z,9) = ¢(zg7})F(z,9).

() (WF)(z,9) = [

The following theorem is established in [25].

THEOREM 6.1.

i 7,

and Uy, V, and W are furthermore unitary.

Y

, W, Ly, My as in Definition 6.3 are bounded operators on H

(i) Let Q={U;,Ly:g€G, % as in Definition 6.3 but arbitrary} and
0 ={V,, My : g€ G, ¢ as in Definition 6.3 but arbitrary}. Then R(2) = (Qy
and R(Q) =, where ' = {Te L(HF):TA =AT for A eQ}, etc.

(iii) R(Q) and R(Q) are spatially isomorphic and the spatial isomorphism is
implemented by W in the sense that the isomorphism & : R(Q) — R(Q) is given
by ®(A)= WAW-1, A€ R(Q). Each is the communtant of the other.

(iv) R(RQ) and R(Q) are factors (since G is free and ergodic).

Notation 6.1. In the sequel we shall denote R(Q) and R(Q) by
M(X,G,u) and M’(X, G,u), respectively.
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In order to define relative dimension functions Dyy and Dy of M(X, G, 1)
and M’(X, G,u), we make use of the results of Section 3.

Since HE =% ®L%(u), by Section 3 every T € L(HF) has a matrix
representation of the form (T, )gheq, Where each Tgp is a bounded lincar
operator on L2%(u) and || T, || <||T|| for g,h € G. However, when T belongs to
M(X,G,p) or M(X,G,u) we can describe T more specifically. To this end, we
define the following mappings on L2(p).

DEFINITION 6.4. For fe L2(u) let

dugy ()
(4) (Ugf>(z)={ °
dp
(B) (Lyf)(z)=9(z)f(z) for any bounded of/-measurable complex function %
on X.

1/2
] f(zg) for ge G, and

Then it is known that Uy, L., are bounded operators on L%(p) and U is
furthermore unitary. Recall that L2(u) is a unitary space or a separable Hilbert
space.

Now we can describe (T, ) as below.

THEOREM 6.2. Let T be a bounded operator on H.LG with its matriz repre-
sentation (Tyh)g hec- Then:

i) TeM(X,G if and only if Typ =1L Up-1,;
() TEM(X,G,) if and only if Ty =Ly, () Uily

(i) TeM'(X,G,u) if and only iof Ty = L¢ W-1(zh) where Y, 15 a bounded
o/-measurable complez function on X. !

Notation 6.2. In the terminology of Theorem 6.2, we shall write
T~ [[#g(2)]] geq for T € M(X,G,p) (resp., for T € M’'(X,G,p)). (Note that the
totality of the functions {4, : g€ G} is the same for both M(X,G,s) and
M'(X,G,p).)

Making use of the results in [19] and [25], we can determine the types of
M(X,G,u) and M’(X,G,u), when G is measurable. In fact, the following
theorem describes their type classification.

THEOREM 6.3. Suppose G is an utmost countable, free, ergodic and measu-
rable (X, of,p)-group, with v = pu, where v is a o—-finite G-invariant measure on
of. Let v* be the outer measure induced by v. Let dv(z)/dp = k(z) and let
T2 [[Yg(2)]lgec for TeM(X,G,u) or for TeM(X,G,u). Let Dy(F)=
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[xYe(2)k(z)du(z) and Dy (E') =[x ve(a)k(z)dp(z) where E=[[9g(z)]geq
CE I [[Yg (o)) gec, EE€M(X,G,u) and E'€ M'(X,G,u). (Since G is ergodic,
the function k(z) ts uniquely determined ezcept for a positive constant multiple).
Then the following hold:

(i) Dwm is a relative dimension function of M(X,G,u) and there ezists a
projection E € M(X,G,p) with 0 < D(E) < o0o. Thus M(X,G,u) is a non type
111 - factor. A similar result holds for Dy and M'(X, G, ).

(ii) If v(X) < oo and if there exists z € X with v*({z}) >0, then there exists
NcX with v¥(N)=0 such that the one-point sets {y}eof and
v¥({y}) = v*({z}) for all ye€ X\ N, where o is the Lebesgue completion of o
with respect to v. Thus we can take X ={z1,2z9,...,2,} (say) with
v*({z;}) =v*({z;}) =€ for i#j, with 0<e<oo. Then M(X,G,u) and
M'(X,G,pu) are of type 1. Besides, (1/e¢)Dy and (1/€)Dyy are the normalised
relative dimension functions of M(X,G,p) and M/(X, G, pu), respectively.

(i) If v(X)= o0 and v*({z}) >0 for some z € X, then a result similar to (ii)
holds with X ={z;}] and v*({z;})=v*({z;}) for i#j. (Note that
v*({z}) < 0). Consequently, M(X,G,p) and M’'(X,G,p) are of type 1.

(iv) v*({z}) =0 for each z € X, then M(X,G,p) and M'(X, G,u) are of type
I if v(X) < oo and of type Il if v(X)=00. When v(X )< oo, (1/v(X))Dm
and (1/v(X))Dw are the normalised relative dimension functions of M(X, G, p)
and M'(X, G, 1), respectively.

With the general construction established in the above, following [19] we
now give some examples of type Il -factors

EXAMPLE 6.1 (Type II-factors). Let X be the set X,=R or the set
X, =[0,1), the set R mod 1. Let ¢ = B(X), the o-algebra of all Borel sets in
X and let g be the Borel restriction of the Lebesgue measure.

We take G to be one of the following additive groups.
(¢) Gg={m + noe:m,n€eZ}, © an irrational number.
(B) Grat = {all rational numbers in R}.
(1) Gragp={m/p":meZ,n=0,1,2,...}, where p is any given number
2,3,... (not necessarily prime!).

For ge G, let zg=z + g for € X, and zg=1z + g (mod 1) for € X;.
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Then it can be shown that G is a free, ergodic (X, of,u)-group. Since p is
translation invariant in X as in Xp, it follows that G is measurable with v = p.
Thus by Theorem 6.3, M(Xy,G,x) and M'(X,,G,u) are type Il -factors,
while M(X;,G,u) and M’(X;,G,u) are type II; -factors.

Note 6.1. Since the family of the groups Gy is uncountable, apparently we
have given above a continuum of type II; and type Il -factors on a separable
Hilbert space. But all the type II; -factors given in Examples 6.1 turn out to be
spatially isomorphic to each other. (See Section 8).

7. CONSTRUCTION OF TYPE III -FACTORS

When the (X, o/,u)-group G is non-measurable, von Neumann showed in
[25] that the factors M(X, G,s) and M’'(X,G,u) of Notation 6.1 are of type IIL
The following result gives a sufficient condition for G to be non-measurable.

THEOREM 7.1. Suppose that G is a countable (X, o ,u) - group which is free
and ergodic. Let Go={g€ G : p(A)=p(Ag) for all Aecef}. Then Gy is a free
(X, o’,u)-group and is measurable with v = p. If Gy is ergodic and Gy+ G, then
G 15 non-measurable.

THEOREM 7.2. If G is a free, ergodic, non-measurable (X, o’ ,pu)-group,
then the factors M(X,G,n) and M/(X,G,u) of Section 6 (see Notation 6.1) are
of type 111.

Making use of Theorems 7.1 and 7.2, the following example of a type III-
factor on a separable Hilbert space is given in [25].

EXAMPLE 7.1 (A type Ill-factor). Let X =R and o = 2B(R), the
o-algebra of all Borel subsets of R. Let u be the Borel restriction of the Lebesgue
measure in R. We take G to be the group of transformations {T(p,0):p >0,
p, o rational }, where

T(p,o)z=pz+0, zeR

and the group operation of G is given by composition of transformations. Clearly,

G is a free (X, o,u)-group and is countably infinite. The group Gy of Theorem
7.11s given by

Go={T(p,0): u(T(p,0)A) = u(A) for Ae o} =
:{T(pwa)pﬂ(A)=ﬂ(A) for A€ J}:
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={T(1,0) : o rational}

and hence Gy#+ G. Besides, Gy is isomorphic to G.,; (see Examples 6.1) which is
ergodic and hence Gy is also ergodic. Therefore, by Theorem 7.1, G is
non-measurable and hence, by Theorem 7.2, M(X,G,u) and M'(X,G,u) are
type III -factors.

Note that M(X,G,u) and M'(X,G,.) are spatially isomorphic by
Theorem 6.1 (iii).

Before proceeding further, we make some comments on [19] and [25]. In [19],
Murray and von Neumann gave the type classification theory of factors on H and
constructed the factors M(X,G,u) and M'(X,G,s) assuming that G is an
utmost countable (X, o”,u)-group, which is free and ergodic such that u(Ag) =
w(A) for all A €¢. In other words, in the terminology of Theorem 6.3, they
assumed v =y and hence were led to the construction of factors of type I and II
only. At that time, they wondered whether any type III-factor existed at all. It
was only in 1940 that von Neumann modified the construction given in [19]
introducing the terminology of measurable and non-measurable (X, ¢,u)-group
and thus obtained in [25] the construction of factors of type I, II, III. These
results have been described above in Section 6 and in the present section.

8. HYPERFINITE TYPE II; -FACTORS

In [21] Murray and von Neumann answered affirmatively the question
whether there were at least two non-isomorphic type II; -factors on H. This was
done by studying the class of type II; -factors known as approximately finite type
I, -factors. The main results of [21] will be presented in this section as well as in
the next two sections. Here we restrict our study to isomorphism property of
these factors and show that the type II;-factors in Examples 6.1 are spatially
1somorphic.

DEFINITION 8.1. A factor ® on H is said to be hyperfinite (=approxi—
ately finite or ATI = almost type I) if there exists an increasing sequence (Mi)‘f
of discrete factors M; of finite type L, (so that n; divides n;,;) such that & is
the von Neumann algebra generated by U"l"M i

Murray and von Neumann use the terminology “approximately finite ” and
Dixmier [9] calls it hyperfinite, which is also referred to as ATI by Connes.
When £ is a type II; ~factor, the sequence (n;) involved in Definition 8.1
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has no role in determining its algebraic type. In fact, the following result was
obtained in [21].

THEOREM 8.1. Hyperfinite type II;-factors ezist on H and any two
hyperfinite type 11, -factors on separable Hilbert spaces are isomorphic.

In Theorem 6.3 we can guarantee that M(X,G,u) and M'(X,G,u) are
hyperfinite when G satisfies some more conditions. In fact, the following theorem
has been given in [21].

THEOREM 8.2. Suppose in Theorem 6.3 the (X,o,u)-group G satisfies
one of the following conditions:

(*) There ezists a sequence Gy C GyC... of finite subgroups of G such that
(**) G 1s abelian.

Then the factors M(X,G,u) and M'(X, G,u) are hyperfinite type 11, -factors,
whenever they are of type 11, .

A detailed proof of Theorem 8.2 corresponding to the condition (*) is found
in [21], but the proof corresponding to (**) was postponed for a future
publication, but was never published. Nevertheless, later in 1963 Dye [11]
obtained the same result as a particular case of a more general situation.

Returning to the factors M(X; ,Gg, 1), M(X;,Gra, ) and M(X;, Gy 5, 42) Of
Examples 6.1, we observe that they are hyperfinite type II; -factors by Theorem
8.2 as the groups are abelian (while G, and Gy, , also satisfy (*)) and hence
by Theorem 8.1 they are isomorphic. Now by Theorem XI of [19], Theorem XI of
[20] and by the isomorphism between these factors we deduce the following:

COROLLARY 8.1. The factors M(X;,G,u) of Ezamples 6.1 are spatially
isomorphic hyperfinite type 11, -factors, where G s any one of the groups Gy,
Grat and Gy p-

9. A SIMPLE GROUP -THEORETIC CONSTRUCTION OF TYPE II; -FACTORS

Imposing a stringent condition on the group G, Murray and von Neumann
gave a simplified version of the measure theoretic construction of Section 6 in [21]
to obtain type II; -factors. Before explaining this construction, it is worth
pointing out that this construction played a crucial role in the later works of Dusa
McDuff [17, 18] and Sakai [30, 31] to obtain a continuum of non-isomorphic type
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II; and type III-factors. See Sections 12 and 13.

Suppose X ={z}, o ={{z},0} and p(?)=0, p({z})=1 Given a
countably infinite group G, let zp9 =125 for all ge G, so that G is an
(X, o,u)-group. In this case HC reduces to the separable Hilbert space ¢2(G),
which is given by

2(G)={f: G— C such that gXGJG [f(9)|2< 0}

with the inner product
<f.fr>= X f1(9)f().

Moreover, in this case the unitary operators (790 , V, , W of Definition 6.3

90’

assume the simple forms U, - v, W, respectively, where

9% °
(U, £)(9) = F(990)
(V. £)9)=1(559)
and
(Wf)(9) = f(g™)
for go, g € G and fe £2(G).
Then by Theorem 6.1 (i), Ug0 , Vgo and W are unitary operators on £2(G).

As the bounded o/-measurable functions on X now reduce to constant functions
the von Neumann algebras R(Q) and R(Q) of Theorem 6.1 (i) are the same as
those generated by {[]g :g€G} and {Vg : g € G}, respectively. Let us denote
them by U(G) and UV(G), respectively. Then U(G) and V(G) are spatially
isomorphic to each other by W and one is the commutant of the other. Since
these algebras play an important role in the construction of type II; - and type
III - factors of later sections, we give the following:

Notation 9.1. 4(G) and UV(G) denote the von Neumann algebras
generated by {l]g :g€ G} and {Vg : g € G}, respectively.

THEOREM 9.1. (U(G))' =TV(G) and (V(G))' = U(G). Moreover, U(G)
and U(G) are spatially isomorphic and the spatial isomorphism is implemented

by W.

Since X = {zp}, with p({zo}) =1 and zy9 = ¢ for all g € G, evidently G
is neither free nor ergodic. Thus it is necessary to find some other conditions on
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G to ensure that Y(G) and U(G) are factors. To this end, Murray and von
Neumann introduced the following concept in [21]:

DEFINITION 9.1. A group G is called an infinite conjugacy class group (in
abbreviation, an ICC-group) if the conjugate class C,={h7gh : he G} is
infinite for each g#ein G.

Obviously, an ICC -group is a non-commutative infinite group.
Now we can state the following interesting theorem:

THEOREM 9.2. For a countable group G, U(G) and V(G) are factors on
the separable Hilbert space £2(G) if and only if G is an ICC-group. In this case,
U(G) and B(G) are type II,-factors. Moreover, if G satisfies condition (*) of
Theorem 8.2, then these are hyperfinite type 11;-factors.

As an application of the last part of the above theorem, is given below an
example of a hyperfinite type II; -factor as a U(G).

EXAMPLE 9.1. Suppose that G is the subgroup of the permutation group
of N formed by all those permutations which leave all but a finite number of
elements fixed. Then G is an ICC-group and G = UT G, with G,1, where G, is
the subgroup of all those permutations which leave all but {1,2,...,n} fixed.
Consequently, by Theorem 9.2 the factors Y(G) and U(G) are hyperfinite typc
II, -factors.

10. EXAMPLE OF A NON-HYPERFINITE TYPE II; -FACTOR

All the type II;-factors constructed in the earlier sections turn out to be
hyperfinite and thus are isomorphic to each other by Theorem 8.1. Then the
following question arises naturally. Does there exist any non-hyperfinite type
I1;-factor on H?. Murray and von Neumann answered this question affirmatively
in [21] by introducing an isomorphism invariant called “the property I'” and
then constructing a factor on H without the property T'.

DEFINITION 10.1. We say that a type II;-factor M on H has the property
I' if for each € >0 and for each finite set {Ty, Ty,...,T,} of elements in M
there exists a unitary U= U(Ty, Ty,...,T,;) € M with Try(U) =0 and

[[UATU-Ti]ll<e for k=1,2,...,n
where [[A]] = (Try(A4*4))Y/2 and Try is the relative trace of M.
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Here the relative trace Ty is an extension of Dy to all hermitian elements
in M with Try(I) =1 and satisfying certain properties. (See [21]).

THEOREM 10.1. The property T is an isomorphism invariant. If M is a
hyperfinite type Il -factor on H, then M satisfies the property T'. Thus all
hyperfinite type 11,~factors on separable Hilbert spaces satisfy the property T .

In [21] Murray and von Neumann introduced a sufficient condition on the
ICC-group G to ensure that Y(G) is not hyperfinite. Let us state their result.

THEOREM 10.2. Let G be a countable ICC -group and suppose there ezists
a set ' G with the following properties:
(1) There ezists a g, € G such that F U g Fg~' = G\ {e}.
(ii) There ezists a g, € G such that the sets F, g,Fg;1 and g, Fg, are disjoint.
Then the factors 4(G) and B(G) do not possess the property I'.

Applying Theorems 10.1 and 10.2, Murray and von Neumann gave the follo-
wing example of a non-hyperfinite type II; -factor in [21].

EXAMPLE 10.1 (A non-hyperfinite type II; -factor). Let G be the free
group generated by two elements a and b. Clearly, G is a countable ICC-group.
Let F be the set of those g € G which when written as a power product of a and
b of minimum length end with ¢®, n==%1,+2,... . It is an easy exercise to
verify the properties (i) and (ii) of Theorem 10.2 for the set F. Consequently, by
Theorem 10.2 the type II;-factors U(G) and V(G) do not satisfy the property I'
and hence are non-hyperfinite by Theorem 10.1.

The above example, and Theorems 8.1 and 10.1 imply the following

THEOREM 10.3. There exist at least two non-isomorphic type 11i-factors
on a separable Hilbert space H, one being hyperfinite and the other non-
hyperfinite.

Though Murray and von Neumann could provide more examples of non- hy-
perfinite type II;-factors in [21], they could only establish the existence of just
two non-isomorphic type II;-factors in terms of the property I'. However, their
method and ideas were used later by Dixmier and Lance [10] and Dusa McDuff
[17, 18], the latter even being successful in constructing an uncountable family of
non-isomorphic type II;-factors on a separable Hilbert space. See Section 12.
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11. PUKANSKY’S EXAMPLES OF TWO NON-ISOMORPHIC TYPE III-FACTORS

Though von Neumann constructed some type III-factors on a separable
Hilbert space H in [25], he did not study any isomorphism invariant to obtain
non-isomorphic type III-factors. The first contribution in this direction came
from Pukansky [28], who introduced an isomorphism invariant called “the
property (L)” and constructed two non—isomorphic type III-factors, one
satisfying (L) and the other failing (L). Later, these examples played a
fundamental role in the construction of an uncontable family of non-isomorphic
type IlI-factors given by Powers [27], Sakai [30] and Connes [6]. See Sections 13,
14 and 16.

Following Pukéansky [28] and [32], we present the construction of these
factors of Pukansky. For details, the reader is referred to [32].

DEFINITION 11.1. A von Neumann algebra &£ on H is said to satisfy the
property (L) if there exists a sequence of unitary elements (Uj)} in & such that
Uy— 0in 7, and |[UyAU* —A||— 0 as k— oo forevery A € £.

EXAMPLE 11.1 (Type lI-factor 4 (,,)%). Let 2, ={0,1}, n €N and let
X =17Q,. Let p, be the measure on P(Q,) defined by x,({0})=(1-p,)/2
and p,({0})=(1+p,)/2, where 0< 6 < p, <1-§ for some fixed 6§ >0. Let
b= H‘fpn be the product measure on the corresponding oc-algebra in X. Let
G={w=(w,)]:w,#0 occurs for a finite number of n’s only}. Then, with
respect to addition given coordinatewise mod 2, G is a countable group. For
geG and we X, let wg=w+g, where (w+g); = w;+¢; (mod 2). Then it can
be shown that G is a free, ergodic, non-measurable (X, ¢f,u)-group.
Consequently, by Theorem 7.2, M(X,G,s) and M’(X,G,u) are type III-factors
on the separable space Hf . Moreover, these factors satisfy the property (L) if
(1-p,)/2=p and (1+p,)/2=gq for all n. (See [28]). For later use, let us
denote M(X,G,u) corresponding to (p,)] by H(p,)®

EXAMPLE 11.2 (Type III-factor P). Let G be the free group generated by
two elements. Then G is countably infinite. For each g € G, let X, ={0,1}. Let
fi4 be the measure defined by u4({0})=p and p,({1}) = ¢ with 0<p < ¢ and
ptg=1.Let X =Ty X, and let (X,o’,u) be the associated product measure
space. Let

Go= {2 = (24)gec : T, #0 for a finite number of g’s only}.
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Let ¥ ={(z,9): 7€ Gy, g € G}. For each element a = (z%gp) € 7, let us define
the transformation T, : X — X given by

Toz =za = (zgog ® 10 )oe

where 7, @10 = Tg9 + z) (mod 2). Then these mappings T, are bijective on
X. For the law of composition

ky
aﬂ = (1:790)(‘!/7}7'0) = (JJ 0 + y:gOhO) =T, where zh(] = (zhog)geG )

% is a semigroup. Since ¥ has the identity element (0,e) and the inverse of
(z,9) in ¢ is given by (z-‘l'l,g'l), it follows that % is a group. Also it can be
shown that % is a free, ergodic and non-measurable (X,o,u)-group.
Consequently, the corresponding M (X, ¥ ,u) of Theorem 7.2 is a type III-factor
on the separable space H‘? . Pukinsky [28] showed that this factor fails the
property (L). For later use, we shall denote this factor by P. (Note that in the
study of Pukansky [28] or in that of Sakai [32], the factor P is not distinguished
for different pairs (p;,q;) and (pq,g2))-

Since the property (L) is an isomorphism invariant, the above examples
imply the following:

THEOREM 11.1. There ezist at least two non-isomorphic type 111-factors on
a separable Hilbert space H, one satisfying the property (L) and the other failing it.

12. A CONTINUUM OF NON -ISOMORPHIC TYPE II; -FACTORS

After the publication of “On Rings of Operators IV ” in 1943, only two
non-isomorphic type II;-factors were known for many years. In 1963 J. Schwartz
[34] introduced as isomorphism invariant called “the property (P)” and using
(P) distinguished two non-isomorphic non-hyperfinite type II,-factors. After the
publication of [34], many mathematicians became interested in the construction of
new non-isomorphic type II;-factors. Using the notions of central and
hyper-central sequences in a type II;-factor, Dixmier and Lance constructed two
new examples of non-isomorphic type II,-factors in [10]. New type II;-factors
were also given by Wai-mee—ching [4], Sakai [29] and Zeller-Meir [39]. Thus only
nine non-isomorphic type II;-factors were known before the publication of [17]
and [18] by Dusa McDuff.

In this section we briefly sketch some of the ideas used by Dusa McDuff [17,
18] and describe the comstruction of a continuum of non-isomorphic type
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I1;-factors following Sakai [32]. For details of the proof, the reader is referred to -
Sakai [32, pp. 183-192].

Motivated by the hypothesis in Lemma 6.2.1 of [21] (see Theorem 10.2
above), Dixmier and Lance introduced in [10] the notion of a residual subgroup H
of G, according to which the hypothesis in the said lemma of [21] implies that {e}
is a residual subgroup of the ICC-group G. Since it is not known whether the
finite product of residual subgroups is residual, Dusa McDuff defined in [17] a
much stronger notion of strongly residual subgroups for which the said propety
holds and considered strongly residual sequences of subgroups in G. Using these
notions, and proving many technically complex lemmas, she constructed an
uncountable family of type II;-factors in [18].

Let G{, G,o,...; Hy, Hy, ... be two sequences of groups. We denote by
(G, Go,...; Hy, Hy, ...) the group generated by the G;’s and the H;’s with
additional relations that H;,H; commute elementwise for i#j and G; f;
commute elementwise for i <j. Let L, = (2,2, ...;2,2Z, ...). Let L, be defined
inductively by Ly = (2,2, ... ; Ly _y, Ly 1, ...) for k> 1.

Let 7 be a sequence of positive integers. Let M,(7) = %/-; Ly, if
m=(p1,pa,---); and My (7) = 8.1 ®L,, for n<ng and M, (1) = My () for
n>mng, if T=(p1,...,Pn,)- Let G(7)=(2Z,2,...; M{(7),Mqo(7),...). Then
one has the following result.

THEOREM 12.1. If m = (p;) and 79 =(q;) are two sequences of positive
integers such that m +my as sets, then U(G(m)) and U(G(m)) (see
Notation 9.1) are non-isomorphic type 1l;-factors. Nome of these factors is
hyperfinite. Thus there ezists a continuum of non-isomorphic type II;-factors.

13. SAKAT’S CONSTRUCTION OF UNCOUNTABLY MANY NON-HYPERFINITE
TYPE III AND TYPE II,-FACTORS

In the set up of W *-algebras, Sakai [30, 32] extended the notion of central
sequences and, using the type III-factor P of Section 11 and the ICC-groups G(7)
of Section 12 above, constructed a continuum of non-isomorphic type III-factors
and deduced the existence of a continuum of non-isomorphic type II-factors.
This is outlined as follows:

A B*-algebra W is called a W *-algebra if there exists a Banach space Wi
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such that W is the Banach space dual of W«. Let W a W *-algebra in the sequel.
The weak *~topology o( W, Ws) is called the o-topology of W. A *-homomorphim
$: Wy — W, between two W *-algebras W, and W, is called a W *-homomor-
phism if it is continuous for the g-topologies of W; and W,.

Given a W*-algebra W, there exists a faithful W *-representation ® of W
into L(K) of some Hilbert space K (K can be finite diemnsional or of arbitrary
dimension) such that ®(W) is a *-subalgebra closed in the weak operator
topology of L(K) (see Section 1.16 of Sakai [32]). In such case, W is said to have
a W *-representation (®,K). Moreover, when W contains the identity, then
(W) is a von Neumann algebra on K.

Let T={%: % a g—continuous positive linear form on W}. For each € T,
let ay(z) = (¢(z*z) )1/ 2 for € W. The locally convex topology defined on W by
the family {a,:% €T} of semi-norms is called the s-topology of W. If
{X,:neN} is a uniformly bounded sequence in W, we say that {X,} is a
central sequence if X, X — XX, — 0 in s-topology for all Xe W.

From the theory of tensor products of von Neumann algebras (see [32]) it
follows that P®M is a factor for any factor M and is of type III, where P is as in
Example 11.2.

Considering 6; =P® U(G(x;)), i =1,2 as W *-algebras with identity and
assuming them to be isomorphic for two different sequences of positive integers m;
and 1y (where U(G(m;)) are as in Section 12), Sakai (32] arrives at a
contradiction after proving many intermediate lemmas, in which the above
generalized notion of central sequences plays a key role.

THEOREM 13.1. Let m and my be two sequences of positive integers which
are different as sets. Let G(m) and G(mp) be the ICC-groups constructed in
Section 12 above. Then P®U(G(m)) and P®U(G(my)) are non-isomorphic
type II-factors. Moreover, these factors are non-hyperfinite (see Definition 8.1).
Thus there ezists a continuum of non-isomorphic non-hyperfinite type IlI-factors
on a separable Hilbert space.

Note 13.1. In the next section, following Powers [27] we also give the cons-
truction of a continuum of non-isomorphic hyperfinite type I1I-factors.

Since P is of type III, P is isomorphic to P® L(H) for a separable space H.
Consequently, we deduce from Theorem 13.1 the following:
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THEOREM 13.2. If H is separable and if 7, 7y, G(71) and G(7q) are as in
Theorem 13.1, then L(H)®U(G(m)) and L(H)®U(G(7my)) are non-
isomorphic type Il -factors. Consequently, there erists a continuum of non-
isomorphic type Il ~factors on a separable Hilbert space.

For the details of this section the reader is referred to Sakai [32, pp.
193-202]. ‘

14. POWERS’ CONSTRUCTION OF A CONTINUUM OF NON -ISOMORPHIC
HYPERFINITE TYPE III-FACTORS

The construction of Powers [27] is based on the infinite product of a
sequence of type I,-factors, each one being considered as a C*-algebra with
identity. The reader may refer to [12] for details of the construction of infinite
tensor products of C *-algebras.

Suppose that Z, =2 is a type I,-factor on a separable Hilbert space H for
each neN. Let (p,) be a sequence of positive numbers 0<.p, < 1/2. For

[a ﬁ} (a,B,7,6 complex numbers), let
v 6

Ypn [a ﬂ] = ap, + 6(1 - p,).

Then 4, is a state (= positive linear form with |4, || =1) on 3,. Then let
U(p,)=®, ¥, be the infinite product state of (¢, )] on ®° B, (see
Section 1.23, Chapter 1 of Sakai [32]).

It is known that the state ¥(p,) induces a *-representation Ily(,,) of
£ =8 B, on a Hilbert space Hyp,, (see p. 40 of [32]). The von Neumann
algebra & = (Ty(p,) (£))” is called the W *-infinite tensor product of (.3,)]
by the infinite product state ¥(p, ). In this particular case, # is a factor.

If there exists a positive number § with § < p, < 1/2 — § for each n, then it
can be shown that &= (7yep,)(£))” is a type Ill-factor and that & is
spatially isomorphic to the factor ,,)? of Example 11.1. (See p. 206 of [32]).

When we take p, =X for all n with 0 <X <1/2, the associated type
III-factor A (,,)? is denoted by £ and is called the Powers factor of X.

Introducing an isomorphism invariant called “the property Ly ”, Powers
[27] obtained the following:

THEOREM 14.1. For Ay,Xy€(0,1/2) with A+ Ay, their Powers factors
My, and Ay, are non-isomorphic hyperfinite type Ill-factors. Consequently,
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there ezists an uncountable family of non-isomorphic hyperfinite type III-factors
on a separable Hilbert space.

The reader should note the difference between Theorems 13.1 and 14.1.

15. ITPFI-FACTORS

In [24] von Neumann observed that certain type III-factors could be
obtained as an infinite tensor product of finite type I-factors. But no proof of his
statement was given in any of his publications. It was only in 1963 that Bures [3]
gave the proof of the above assertion along with a partial type classification of
these infinite products. Such infinite tensor products of finite type I-factors are .
themselves factors and are called ITPFI-factors.

In Section 14 we saw that the Powers factors 4, are ITPFI-factors of
special type, with the constituent factors of type I,. Analysing the work of
Powers [27], Araki and Woods studied in [2] the complete type classification of
general ITPFI-factors by introducing the isomorphism invariants ry, and p.
Without going into a detailed definition of an ITPFI-factor M, let us simply
mention some of the principal results of Araki and Woods (2], reformulated in a
form comparable with the later results of Connes (see the next section).

Let us denote the Powers factor A4y by R,, where A =z/(1+z) so that
z€(0,1) as A varies in (0,1/2). We define R as the type I-factor and R; as
the hyperfinite type II;-factor on a separable Hilbert space H. (Note that these
are unique up to isomorphism). The asymptotic ratio set ry(M) for an ITPFI-
factor M defined in terms of the eigen values sets corresponding to the tracial
states of the constituent factors is shown in [2] to be the same as the set
{0<z<oc0: M~M®Ryq)}, where “~” denotes “isomorphic” and f(z) =1z
for 0z <1 and f(z) =z71 for 1 < z <oo. This result suggested the definition of
To(M) = {0<z<00: M~-M®R(,} for an arbitrary factor M.

For two factors R, and R4, it is known that R;®R, is also a factor, which
is of type III (resp., of type II) if &, or £, is of type III (resp,. if one of them is
of type II and the other is semi-finite).

Araki and Woods [2] proved that ry(M) is an isomorphism invariant and
Araki [1] showed that r,(M) must be one of the sets {0}, {1}, Sq={0,1},
S,={0,1,z":n€Z},0<z<1and S; =[0,00) for an ITPFI—factor M. (Here
the original notation is changed in terms of the invariant S of [6]).
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THEOREM 15.1. Ezcept for the case Sy, 7o(M)=ryx(N) for two
ITPFI-factors M and N implies that M and N are isomorphic.

The other isomorphism invariant p(M) for an arbitrary factor M is given in
[2] as below:

p(M) ={0<2<00:Rfy) ~ Rr)®M}.
Using the invariant p, the following interesting theorem was obtained in [2].

THEOREM 15.2. There ezists a continuum of non-isomorphic ITPFI-
factors in the class Sy.

It is interesting to observe that all the Powers factors 4 (0< A <1/2)
belong to the class Sy, which are already known to be non-isomorphic ITPFI-
factors. (see Theorem 14.1.)

Thus for the first time, after the publication of [21], factors given by
different constructions were identified. The classification by r, and p was
generalized later by Krieger [14, 15, 16] to factors constructed from ergodic
transformations. For more information on ITPFI-factors the reader is referred to
Woods [38].

16. RESULTS OF CONNES [6] AND TAKESAKI (36,37

Using the Tomita-Takesaki theory of modular Hilbert algebras and the
non-commutative integration theory, Connes [6] gave an isomorphism invariant
T(M) for an arbitrary von Neumann algebra M. Theorem 14.1 above and the
non-isomorphism of the non-hyperfinite family 4(G)® A4y, 0 < A <1/2, with G
as in Example 10.1, were deduced from the following theorem.

THEOREM 16.1. If M is an ITPFI-factor, then To€ T(M) if and only if
exp(-27/Ty) € p(M), where p(M) is the invariant given by Araki and Woods in
[2]. (See Section 15.)

Another interesting result about T'(M) given in [6] is the following:

THEOREM 16.2. Ewvery subgroup G of R is the set T(M) of a countably
decomposable factor M. When G is countably infinite, M is a factor on a separable

Hilbert space. Futhermore, there ezists a countably decomposable type II-factor M
such that T(M) =R.

In [6] Connes gave another isomorphism invariant S(M) for a factor M and
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showed that M is semi-finite if and only if S(M) = {1}. He also proved that the
invariant T(M) doesn’t determine S(M), in the sense that two factors M; and M,
with T(Ml) ¥ T(Mz) can have S(Ml) = S(Mz)

THEOREM 16.3. For an ITPFI-factor M of type III, S(M) = ry(M),
where 1, (M) is the asymptotic ratio set of M (see Section 15).

Connes [6] also gave an example of a non-ITPFI-factor M for which
S(M) # 7,(M). Also in [6] was given a non-hyperfinite ITPFI-factor, contrary to
the factors Ay of Powers.

The most important results of Connes [6] are those which characterize type
II1-factors. In this direction, he introduced the following:

DEFINITION 16.1. Let M be a factor and A € [0,1]. M is said to be of type
I, if
S(M)={0,1,A":n€2} for 0<A<1,

S(M)={0,1} for A=0 and S(M)={0,00) for A=1.

Since 0 € S(M) for A €[0,1], it follows that every type IIIy-factor is nece-
sarily of type III. Connes [6] proved the following result in the reverse direction.

THEOREM 16.4. For every countably decomposable factor M of type III
there corresponds a unique A € [0,1] such that M is of type IIIy so that every type
1II-factor M on a separable Hilbert space is of type IIIy for some A €[0,1].

He also gave the following theorem of characterization of type IIIy-factors
for A e [0,1).

THEOREM 16.5. (i) Al factors M of type IlIy for A € (0,1) can be realized
as the crossed product of a type I g—factor N by a suitable automorphism © of N.
(i) A factor M of type Il is the crossed product of a von Neumann algebra N
of type Iy with nonatomic centre by a trace diminishing automorphism © of N
which is ergodic on the centre of N.

It is known from [13] that a result similar to (i) and (ii) above doesn’t hold
for type III;-factors.

The work of Connes [6] has many other interesting results, which we omit
here for lack of space. Moreover, Theorem 16.5 is a remarkable achievement in
the classification theory of type Ill-factors and the work of Connes [6] is so
important and original that it earned him the Fields medal of that decade.
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Finally, we include the structure theorem of arbitrary type III-von
Neumann algebras obtained by Takesaki [36] independent of Connes [6].

THEOREM 16.6. A wvon Neumann algebra R of type III is wuniquely
ezpressable as the crossed product of a von Neumann algebra Ry of type 11, by a
one-parameter automorphism group which leaves a trace of Ry relatively
invariant, but not invariant.

For details of this section, the reader is referred to [6], [36] and [37].

Finally we observe that so far no structure theory of type II;-factors is
known, even though distinct uncountable families of non-isomorphic type II;-
factors have been constructed by different authors. See [5, 18, 31].
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