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INTRODUCTION AND NOTATIONS

In multivariate analysis it is generally assumed that the observations are
normally distributed. It was Mardia ([1] to [5]), who first introduced measures of
multivariate skewness and kurtosis; these statistics are affine invariant and can be
used for testing multivariate normality. Skewness and kurtosis tests remain
among the most powerful, general and easy to implement. In this paper we show
some properties of these statistics when population distribution is singular.

Let X=(Xi,X,...,X,)T be a random vector with mean vector u=
(H1,49,-.-,445)T and covariance matrix £=(o,,). When T is a regular matrix
Mardia [1],[2] express the multivariate skewness, §; =f;,, and kurtosis, fy = f,
as:

(1) 1 =Brp=E[{(X—u)T B (Y -p)}
(2) By =Bop=E[{(X - )T EH(X - p)}7]

being Y a random vector independent of X and identically distributed as X.
Their sample counterpart are:

1 p— _ _—
3) b=bp =50 (- DTS (X, - D))

1 J— _ p—
(4) by =bgp =-1_ {(Xi = X)TS-1(X; - X))?
being X; = (X14,X;,-,Xpi)T, 4=1,2,...,n, n independent observations on X, and
X =(X1,Xy,.-,Xp)T, and S=(S,,) denote the sample mean vector and covariance
matrix respectively. When ¥ or S are singular matrices we may define the

multivariate skewness and kurtosis using the g—inverse of £ or S in the sense of
Rao [7],i.e., EZZZ=X and S5 S=S:
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(5) b =Prp=B[{(X —p)T Z°(Y-p)}¥]
(6) Ba =Pap=E[{(X —p)T 57 (X~ p)}¥]

being Y a random vector independent of X and identically distributed as X.
Their sample counterpart are:

(7 by=bip =301 (X = X)TST(X; - X))
(8) by = by =5 L {(Xi - X)TS7(X; - X2

MAIN RESULTS

PROPOSITION 1. Ezpressions (5) to (8) remain the same for any £~ and
any S~

Proof. Since X—p and Y-—p lies in the column space of ¥ with
probability 1, then there exist p—dimensional vectors U,V such that X —pu=XU
and Y-px =XV, then: ‘

(X=p)TE(Y-p)=U0TEE V=0TV
(X—p)TE (X-p)=U0T2E2V=UTEU
that not depend of g—inverse choosed. Analogously for the sample measures b;
and b, we have that X; —X lies in the column space of S, for i=1,2,..,n, then
there exist p—dimensional vectors W; such that X; — X=SW;, i=1,2,...,n, then:
(X; —)T)TS'(Xj -X)= WiTSS_SWJ- = WiTSWj
that also is independent of S~ for 4,j=1,2,...,n. This completes the proof. I

LEMMA 1. Let P,A and @ matrices of appropiate sizes such that

rank (PAQ) =rank(A), then Q(PAQ) P is a g—inverse of A.

Proof. We have that rank(A)=rank(PAQ)<rank(PA)rank(4)=
rank (PAQ)<rank(AQ)<rank(A4), hence rank(A4)=rank(PAQ)=rank(PA)=
rank(AQ). Since rank(PAQ)=rank(AQ) Corollary 1a.3 of Mitra [6] implies
that (PAQ) P is a g—inverse of AQ, also rank(AQ)=rank(A) thus the same
corollary implies that Q(AQ)™ is a g—inverse of A. Therefore:

Q(PAQ) P=Q(AQ) =4~
which concludes the proof. 1

PROPOSITION 2. f, By, b and by are invariant under those linear
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transformations which preserve the rank of covariance matrices L or S
respectively.

Proof Let X and Y be independent random vectors with the same
distribution with mean vector p and covariance matrix . Let Z=AX+b be a
linear transformation of random vector X such that rank(X;)=rank(X). Since
L;=AFXAT and rank(AZAT)=rank(Z) we have from Lemma 1 that
AT(ATAT) A is a g—inverse of £. Moreover pz =Ap+b and W=AY +b is a
random vector identically distributed as Z and independent of Z, thus:

Pu(2)=E[{(Z - uz)TEz(W - uz) | =E[{(X - )T AT(AZAT) A(Y - ) 3] =
=E[{(X-p)TZ (Y- p)P]=5i(X)
and a similar proof implies that [5(Z)=py(X). For independent identically
distributed observations X;,Xj,...,X,, let Z;=AX;+b be linear transformations
of random vectors X;, i=1,..,n, such that rank(Sz)=rank(S). Since Sz =

ASAT and rank(ASAT)=rank(S) we have from Lemma 1 that AT(ASAT) A
is a g—inverse of S. Moreover Z=AX +b thus

b(2)=51 1} 1 (% - 2)T53(2; - )}P=
=222 {6 - X)TAT(ASAT) A (X; - X)P=
=2t {X = X)TS (X - X)) = by(X)
and analogously we have that by(Z) =by(X). 1

PROPOSITION 3. Let Xi,X,,...,X, be n independent observations from
N,(1,X) such that n>r=r1ank(Z), then the sample distributions of b; and by are
the same than those obtained from a random sample Z,,2,,...,Z, from N.(0,1,).

Proof Being ¥ a symmetric nonnegative definite matrix of rank r, there
exists an ortogonal matrix U such that:

0 :0
where Ay,A,...,A, are real and positive numbers. Consider the matrix A=
(A;}2:0)U and the linear transformation Z=A(X -p), with X distributed as

UEUT=A=D1ag(/\1,A2,,A,.,O,,O):[A’ 0]

N,(1,Z). Vector Z has a normal r—dimensional distribution with E(Z)=0 and
covariance matrix:
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Tz =ATAT=(AY2:0)UUTAUUT(AY/2:0)T=(A1/2:0)A(A M 2:0)T=1,

then the vectors Z; =A(X;—p), i=1,...,n, are a random sample from N,(0,I,).
Let S and S; be the sample variance matrices of X; and Z;, i=1,...,n,
respectively. Since n >r we have:

rank (Sz) =rank(Xz)=r=rank(X)=rank(S) as.

then we can apply Proposition 2. Consequently b;(X)=05;(Z), i=1,2. This
completes the proof. 1§
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