Uniform Density and m-Density for Subrings of C(X)

M.I. GARRIDO AND F. MONTALVO

Dpto. de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain

AMS Subject Class. (1991): 54C35, 54A10, 46E25

Received March 7, 1994

For a completely regular space X, C(X) and $C^*(X)$ denote, respectively, the algebra of all real-valued continuous, and continuous and bounded, functions over X. We are interested in the following problem: Is every u-dense subring of C(X) m-dense too?

Recall that the u-topology is defined on C(X) by taking as neighborhood base of $f \in C(X)$ the sets of the form $\{g \in C(X) : |f(x) - g(x)| < \epsilon \text{ for all } x \in X\}$ where ϵ is a positive real number, and that the m-topology is defined by taking the sets of the form $\{g \in C(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X\}$ where u is a positive unit of C(X).

Obviously the m-topology is finer than the u-topology, and it is well-known that the two coincide if and only if X is a pseudocompact space (Hewitt [5]), namely when $C^*(X) = C(X)$. Although, in general, these topologies are different, many families in C(X) that are u-dense are m-dense too. For instance, it was essentially proved by Kurzweil in [6] that the u-density and the m-density are equivalent for the subrings of C(X) that are closed under bounded inversion.

In this note, based on the results obtained in [3], we shall prove that an analogue of Kurzweil's result is not possible for arbitrary subrings of C(X).

We start by setting out a sufficient and necessary condition for the u-dense subrings of C(X) to be m-dense that will be very useful to prove most of the results contained in this paper.

PROPOSITION 1. Let $\mathfrak F$ be a subring of C(X). Then $\mathfrak F$ is m-dense if and only if it fulfills the following conditions:

- (i) \mathfrak{F} is \mathbf{u} -dense.
- (ii) For each $f \in C(X)$ with f(x) > 0 for every $x \in X$, there exists $g \in \mathfrak{F}$ such that $0 < g(x) \le f(x)$ for every $x \in X$.

COROLLARY 2. (Kurzweil [6]) Let \mathfrak{F} be a subring of C(X) closed under bounded inversion (that is, if $f \in \mathfrak{F}$ with $f(x) \ge 1$ for every $x \in X$, then $1/f \in \mathfrak{F}$). Then \mathfrak{F} is \mathbf{u} -dense if and only if \mathfrak{F} is \mathbf{m} -dense.

The following example will be the key to establishing our main result.

EXAMPLE 3. Let $\mathfrak F$ be the subset of $C(\mathbb N)$ defined by $\mathfrak F=\{(q\cdot z_n)_{n\in\mathbb N}:q\in\mathbb Q\text{ and }z_n\in\mathbb Z\text{ for every }n\in\mathbb N\}$.

- (1) $\mathfrak F$ is a linear subspace over $\mathbb Q$. Obviously $\mathfrak F$ is closed under rational multiplication. On the other hand, if $(q\cdot z_n)_{n\in\mathbb N}$ and $(q'\cdot z_n')_{n\in\mathbb N}$ are two sequences in $\mathfrak F$, then the set $\{q\cdot z_n+q'\cdot z_n':n\in\mathbb N\}$ is contained in the additive subgroup of $\mathbb R$, $q\mathbb Z+q'\mathbb Z$. Since $q/q'\in\mathbb Q$ this subgroup is closed in $\mathbb R$ and therefore it must be of the form $p\mathbb Z$ for some $p\in\mathbb Q$. Thus, $(q\cdot z_n)_{n\in\mathbb N}+(q'\cdot z_n')_{n\in\mathbb N}$ belongs to $\mathfrak F$.
- (2) F is a subring. This is self-evident.
- (3) \mathfrak{F} is u-dense in $C(\mathbb{N})$. This is an easy consequence of the uniform density theorem contained in [2].
- (4) \mathfrak{F} is not m-dense. It is enough to see that \mathfrak{F} does not satisfy condition (ii) of Proposition 1. Indeed, there is no function $(q \cdot z_n)_{n \in \mathbb{N}}$ in \mathfrak{F} with $0 < q \cdot z_n \leqslant 1/n$ for every $n \in \mathbb{N}$. Otherwise, the sequence of positive numbers $(q \cdot z_n)_{n \in \mathbb{N}}$ contained in the subgroup $q\mathbb{Z}$ would have to converge to 0, but this is impossible because clearly $q\mathbb{Z}$ has no accumulation points.

Finally, we shall show that there is equivalence between u-density and m-density for the subrings of C(X) only in the trivial case.

THEOREM 4. For a completely regular space X, the following conditions are equivalent:

- (a) X is pseudocompact.
- (b) Every u-dense subring of C(X) is m-dense.

Sketch of the proof. Clearly, it is enough to see that (b) implies (a). So, suppose X is not pseudocompact. Then X has a C-embedded copy of \mathbb{N} , i.e., a discrete countable subspace of X such that every continuous function on it can be (continuously) extended to X (Gillman-Jerison [4]). We shall denote this copy by \mathbb{N} and take \mathfrak{F} to be the u-dense and not m-dense subring of $C(\mathbb{N})$ constructed in Example 3.

We shall complete the proof when we state that $\mathfrak{F} = \{ f \in C(X) : f_{|\mathbb{N}} \in \mathfrak{F} \}$ is a u-dense subring of C(X) that is not m-dense.

Remarks. Note that the same proof is valid if, in the above theorem, instead of subring, we consider one of the following algebraic structures: divisible subring, linear subspace over \mathbb{Q} , subgroup, or sublattice. The reason is that the family \mathfrak{F} in Example 3 has each of these properties. Therefore, we can also establish the non-equivalence between u-density and m-density in those cases.

But what is the case for linear subspaces over \mathbb{R} or for subalgebras? Note that here we can not use the same arguments as before since \mathfrak{F} has not any of these structures. We proved in [1], with different techniques, that the analogous result holds for linear subspaces over \mathbb{R} . Nevertheless we do not know whether the same is true for the subalgebras of C(X).

ACKNOWLEDGEMENT

The authors want to thank Prof. J.A. Jaramillo of Univ. Complutense in Madrid for his helpful and thoughtful suggestions.

REFERENCES

- GARRIDO, M.I. AND MONTALVO, F., On uniformly dense and m-dense subsets of C(X), Extracta Math. 6(1) (1991), 15-16.
- GARRIDO, M.I. AND MONTALVO, F., Uniform approximation theorems for realvalued continuous functions, Topology Appl. 45 (1992), 145-155.
- 3. GARRIDO, M.I. AND MONTALVO, F., Uniform density and m-density for subrings of C(X), To appear in Bull. Austr. Math. Soc.
- GILLMAN, L. AND JERISON, M., "Rings of Continuous Functions", Springer-Verlag, New York 1976.
- 5. HEWITT, E., Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45-99.
- KURZWEIL, J., On approximation in real Banach spaces, Studia Math. 14 (1954), 214-231.