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0. INTRODUCTION

The notation dy, referred to a measure g, often appears in many texts on mea-
sure theory. This notation is used by its very suggesting character, but without
any previously defined notion of differential of a measure. For example, the Radon-
Nikodym derivative is frequently denoted by a quotient du/d), bul no meaning is
given to the individual terms dg and dA.

Our aim is to overcome this deficiency, defining the differential of a measure at
a point in the realm cf € !-differentiable manifolds. This new concept will lead us
to a better understanding of the Radon-Nikodym derivative and it could be useful
in the theory of conditional probability.

1. DEFINITION OF THE DIFFERENTIAL OF A MEASURE

Let p be a measure defined on the Borel subsets of a smooth manifold X. Our
aim is to define the differential d p of g at any point z of X, so that d pu should
reflect the infinitesimal behaviour of y around =. Hence dp will be a measure of
infinitesimal figures at z; that is to say, of figures in the tangent vector space T, X
of X at z. Briefly, d,p should be a measure on T X.

For the sake of simplicity, let us assume that our differentiable manifold X is a
n-dimensional real vector space I and the given point z is the origin of £. In this
case the tangent vector space T, X is canonically identified with E, so that we may
consider that p and dp are defined on the same space E.

It may be convenient to see an example. Let 2 be a region of I limited by an
hypersurface Y and let = be a point of Y. Given a Lebesgue measure m on E, we
consider the measure jq defined by setting

pa(A)=m(ANQ).

* A full version will appear in Archiv der Math.
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From an intuitive viewpoint, it is clear that the infinitesimal behaviour of pg
around z is determined by the tangent hyperplane H to the hypersurface ¥ at z.
That is to say, whatever the definition of the differential would be, it is intuitively
clear that the differential of jq at z should be the measure jix , where € is the
half-space limited by the hyperplane H.

These examples suggest that a natural definition of the differential of a measure
i on E at the point @ = 0 could be provided by the following formula:

") - (das)(A) = Jim p(t4)/2"

But it is not difficult to give examples where the differential is “evident” while
the formula (*) is not valid for any Borel set A. It is too strong to impose the
equality (*) for any Borel set A.

Let us see the above formula (*) {from another viewpoint. Remark that y,(A) =
j(tA)/t" defines a measure on E for every t € Ry. The problematic formula (*)
suggests that the differential d,p should be, in some sense, the limit of the measures
ity as t — 0F. The sense of this limit is provided by the theorem of Riesz: Measures
that are finite on compact sets form the dual space of the space of continuous
functions with compact support. Hence, it is natural to consider the weak topology
on the measures (finite on compact sets), so that we shall say that a sequence of
measures {y;} converges to a measure p if

[rdw = [rdu

for any continuous function f with compact support. These remarks lead us to the
following definition:

DEFINITION. Let i be a measure on E finite on compact sets and let @ be any
point of E. We say that u is differentiable at x if there exists a measure dgp such
that dyp = limy_,o+ g4, where y; are the measures defined by

wl(A) = pla + LAY

This measure du is said to be the differential of & at z.
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This definition may be easely modified so as to give it a sense for measures
defined on an open subset of E. From now on, any measure will be assumed to be
finite on compact sets.

The above definition is related to the intuitive equality (*) by the following
result:

PROPOSITION. Let p be a measure on E. If pu is differentiable at a point z,
then we have

(dop)(A) = lim p(z +LA)/L"
for any bounded Borel set A such that (d.p)(0A) = 0.

2. PROPERTIES OF THE DIFFERENTIAL
The diflerential of measures has the following elementary properties:

1. The differentiability of measures is a local concept: If two measures p, A
coincide on a neighbourhood of a, then  is differentiable at z if and only
if so is A, and in this case dp = d A.

2. The differential d,x is an homogeneous measure: (d.u)(tA) = t*(d-p)(A),
teR,.

3. Let p, A be differentiable measures at . Then au + bA is differentiable at z
for any a,b € Ry and

dz(ap + bX) = adype + bd A .
4. Any Lebesgue measure m on F is differentiable at any point x and d,m =m.

5. Let f > 0 be an integrable function, continuous at x. If a measure g is
differentiable at @, then so is fy and

du(fp) = f(a)daype .

3. FORMULA OF CHANGE OF VARIABLES

The following result is a differential statement of the formula of change of va-
riables in the integration theory.

THEOREM. Let ¢ : U — V be a € !-diflcomorphism between open subsets of
R"™ and let y be a measure on U. If yu is diflerentiable at a point x of U, then ¢(s1)
is differentiable at y = p(a) and we have

@' (dept) = dy(0(n))

where ¢’ stands for the derivative of ¢ at x, and ¢(u) denotes the following measure:

o(1)(A) = n(e™1(A)).
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This theorem enables us to define the differential d,p of a measure u (finite on
compact sets) on a € !-differentiable manifold. In fact, if we choose a coordinate
system (u1,...,u,) defined on an open neighbourhood U of z, it defines a diffeo-
morphism ¢ of U onto an open subset U of R™. Now,  is said to be differentiable at
z whenever i = () is differentiable at Z = ¢(z) and, in such case, the differential
of 4 at z is a measure on T, X defined by the equality d.u = (¢')~!(dzjz), where
@' : Tz X — TzR" denotes the derivative of ¢ at z. The above theorem just states
that these definitions do not depend on the choosen coordinate system.

4. POINTS OF DIFFERENTIABILITY

Let X be a % '-differentiable manifold and let m be the measure defined by
some riemannian metric on X. A Borel subset A is said to be null if m(A) = 0.
It is easy to prove that this definition does not depend on the choosen riemannian
metric.

THEOREM. Any measure on X is differentiable at every point, except for a null
set. Moreover, d yt and d,m are proportional almost everywhere.

As a consequence, it results a more refined version of the Radon-Nikodym deriva-
tive in the realm of ¥ !-differentiable manifolds. Here the Radon-Nikodym deriva-
tive is not a mere class of functions coinciding almost everywhere, but it is a true
function

fz) = (dzpe)/(dzm)

well-defined on the complement of a null set.

5. APPLICATION TO THE CONDITIONAL PROBABILITY

Let us consider a differentiable map T : X — Y between € !-differentiable
manifolds and let P be a probability measure on X. Given a value t € Y, the
conditional *probability P, (interpreted intuitively as the new probability when an
observer knows that the statistic 7" has taken the value t) should be a probability
measure on the fibre X, = T~(1). By means of the Radon-Nikodym theorem, it is
possible to define the family {P,}1ey (see [1] p. 460 or [2] p. 49). Unfortunately, this
family is well-defined up to coincidence almost everywhere, so that the measure P,
may be arbitrarily modified at any fixed value ¢ € Y. Therefore, for any particular
choice t € Y, the Radon-Nikodym theorem is unable to define P,.

On the contrary, the differential of this yet-to-be-defined measure P, is obvious
in most usual contexts. Let us assume that T is a regular map, so that X, is a
differentiable submanifold of X and we have an exact sequence of vector spaces

0—Tu(X) =T X -TY —0 (z€Xy).

Let us also assume that d;P and d,T(P) are Lebesgue measures. From the above
exact sequence one easily obtains a Lebesgue measure gt on T;(X;) which is a na-
tural candidate for the differential of P, at . We define the conditional probability
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measure, with respect to the condition T'(2) = t, to be the unique (if it exists)
absolutely continuous measure P, on X, such that d;(P;) = p, for any z € X,.

For example, if T' : R? — R is defined by T'(¢,z) = t and P has a continuous
density function f(t,z) with respect to the Lebesgue measure:

P(4) = /A f(t,z)dtdz

and F (1) = [ f(t,z)dz is continuous, then it is easy to check that the differential of
P, at any point (¢,z) must be (f(t, :c)/F(i))dx, where dz stands for the differential
of the Lebesgue measure on X; = ¢t x R. Therefore, in this case the conditional
probability P, exists and it has the density f(¢,z)/F(t) with respect to the Lebesgue
measure on ¢ X R:

) _ Ja f(z,1)dz
Pl Ay = ayae
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