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The topological vector spaces of continuous functions and operators on
them have been the objects of intensive and extensive study for the last sev-
eral decades in the realm of topological algebraic analysis and have played
significant roles in unification and classification of results in the broader areas
of functional analysis. On any space of functions with some structures, there
are two natural types of operators, one is the operator of multiplication and
other is the operator of composition. When we combine them somehow we
get another type of operator, known as the weighted composition operator,
in short written as WCO. Among the operators the compact operators are of
special significance as they make contact with concrete situations in applica-
tion oriented studies. In this article, we have endeavoured to present a survey
on the works done on the compact WCOs on several spaces of the continuous
functions, specially the weighted spaces of continuous functions. This survey
article has the following sections:

1. Introduction
Spaces of continuous functions
Appearance of WCOs
WCOs on weighted spaces
Compact WCOs

Ol N

1. INTRODUCTION
For any two nonempty sets X and Y, and any non-trivial topological vector
space I over K € {R,C}, let F(X,FE) and F(Y,E) denote vector spaces
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(over K) of E-valued functions on X and Y respectively with pointwise linear
operations. Let B(F) denote the space of all operators on E (i.e. continuous
linear transformations from E to itself). Let 7w be a function on Y which
is scalar-valued, B(FE)-valued, or E-valued in case E is an algebra, and let
T:Y — X be a mapping such that 7- foT € F(Y, E) whenever f € F(X, E),
where the multiplication of 7 and the composite function f o T is defined
pointwise on Y. Then the map f — 7 - f o T is a linear transformation
from F(X,E) to F(Y,E). We denote it by W, r and call it the weighted
composition transformation from F(X,FE) to F(Y,F) induced by the pair
(m,T). In case both F(X,FE) and F(Y, E) are topological vector spaces and
W, 7 is also continuous, it is called the weighted composition operator (WCO)
from F (X, E) to F(Y, E). These operators behave like contravariant functors
on categories of function spaces.

In case w(y) = 1 or w(y) = I, the identity operator on E, or n(y) = e,
the unit of multiplication in algebra E for all y in Y, we write Cr in place of
W and call it the composition operator induced by 7. When X =Y and
T: X — X is the identity map, we denote the corresponding WCO simply by
M, and call it the multiplication operator on F(X, F) induced by 7.

If Cr is a composition operator from F(X, E) to F(Y, E) and if M, is a mul-
tiplication operator on F'(Y, E), then W, (= M,oCr) isa WCO from F (X, E)
to F(Y, E). But the converse statement is not true. For instance, let us con-
sider the case when 7(y) = 0 for ally € Y. Then W, 7 is the zero operator from
F(X,E) to F(Y,E) and so it is continuous, even if Cr: F(X,E) — F(Y, E)
may not be continuous.

Thus the class of WCOs includes the two well known classes of opera-
tors, namely the class of composition operators and the class of multiplication
operators. The study of WCOs has been the subject matter of several pa-
pers in recent years, see for example Nordgren [35], Cowen [11], Latushkin
and Stépin [28], and Singh and Manhas [47]. The initial study of WCOs was
concentrated on LP-spaces and HP-spaces, which plays a very important role
in the study of operators on Hilbert spaces, classical mechanics, statistical
mechanics and ergodic theory (for instance, see Abrahamse [1], Hadwin and
Hoover [15], Nordgren [36], Koopman [25], Von Neumann and Halmos [16, 17],
Mayer [33], Lambert [26], and Hoover et al [19]).

In the last decade the study of WCOs was initiated on spaces of continuous
functions to have its interactions with topological dynamics (see, for example
Singh and Summers [56], Singh and Manhas [45, 48]).

The study of WCOs has been mostly carried out under the three main sit-
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uations. Under the first situation, the function spaces are taken to be Banach
spaces of measurable functions on measure spaces X and Y, and 7: ¥ — K
and T:Y — X are measurable functions. WCOs on LP-spaces fall under
this category. Under the second situation, the function spaces are functional
Banach spaces and the inducing functions have properties consistent with the
concerned function spaces. For example, WCOs on Hardy spaces and Bergman
spaces induced by holomorphic mappings have been studied under this setting.
Under the third situation, we have spaces of continuous functions on topolog-
ical spaces X and Y, and the inducing functions are continuous.

Our interest in this article centers around the compact WCOs on weighted
locally convex spaces of vector-valued continuous functions (defined in sec-
tion 2) which fall under the third situation mentioned above.

2. SPACES OF CONTINUOUS FUNCTIONS

Let X be a completely regular Hausdorff space and F a Hausdorff locally
convex topological vector space (briefly, written as LCS) over K € {R C}.
Then by C(X, E) we denote the vector space of all continuous functions from
X into F, and by c¢s(F) we mean the collection of all continuous seminorms on
E. A function f: X — E is said to vanish at infinity if for each neighbourhood
N of origin in E there exists a compact subset K of X such that f(z) € N
for all z in X \ K, the complement of the set K in X, or equivalently, if the
set {z € X : p(f(x)) > €} is relatively compact for every p € cs(E) and € > 0.
Then we define

Co(X,E) ={f € C(X,E) : f vanishes at infinity on X},
Co(X,E)={f e C(X,E): f(X) is precompact in E}, and
Cy(X,E)={f € C(X,E) : f(X) is bounded in F}.

Clearly Cy(X,E) C C,(X,E) C Cy(X,E). When E = K with the usual
topology, these spaces are respectively denoted by C(X), Cy(X), C,(X) and
Cy(X).

In case X = N, the set of all natural numbers with the discrete topology,
Cy(N) = £°°, the Banach algebra of all bounded sequences in K, and Cy(N) =
¢p, the Banach space of null sequences in K. For f in C(X) and ¢ in E, the
function f, given by f,(z) = f(z) -t for all z in X belongs to C(X, E). If
[ € Ci(X), then f, € Ci(X, E) for all t in E, where 7 € {0,p, b}. In particular,
for f =1, the constant one function on X, 1, € C;(X, E), where i € {p, b}.

A real-valued function f on X is called upper—semicontinuous if the set
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{z € X : f(z) < a}isopen for all ¢ in R. By a weight we mean a nonnegative
upper—semicontinuous function on X. Let V denote a family of weights on X.
Then we say that V' > 0 if for every x € X there is some v, € V such that
v, () > 0; and that V is direct upward (or a Nachbin family [57]) if for every
pair u,v € V and every a > 0 there exists a w € V such that au(z) < w(z) and
av(z) < w(z) for all z in X. Since there is no loss of generality, we hereafter
assume that the sets of weights are directed upward. Now by a system of
weights we mean a set V of weights on X which additionally satisfies that
V > 0.

Let us now consider the following vector spaces (over K) of continuous
functions from X into E for a given system V of weights on X:

CVo(X,E) ={f € C(X,E) : vf vanishes at infinity on X for all v € V},
CVy(X,E)={f € C(X,E):vf(X) is precompact in E for all v € V'},
CVy(X,E) ={f € C(X,E) : vf(X) is bounded in E for all v € V}.

It is clear that CVo(X,E) C CV,(X,E) C CVy(X,E). If for each v € V,
q € c¢s(E) and f € C(X, E), we define

[flv.g = sup{v(z)q(f(z)) : = € X},

then || - ||,, can be regarded as a seminorm on CVy(X, E), CV,(X,E) or
CV,(X,E). We assume that each of these three spaces is equipped with the
Hausdorff locally convex topology generated by the family {||-|,, : v € V,q €
cs(E)} of seminorms. This topology is known as the weighted topology and
has a basis of the closed absolutely convex neighbourhoods of origin of the
form

By = {f € CVo(X, B) : |l <1}

Thus CVo(X, E), CV,(X, E) and CV,(X, E) equipped with this weighted topo
logy are weighted (locally convex) spaces of vector-valued continuous func-
tions. In case ' = K with the usual topology, it is convenient to write these
spaces as CVy(X), CV,(X) and CV,(X) respectively; also we then write || - ||,
in place of || -[,,, for all v € V', where ¢(z) = |z|, z € K. Further, if E = (E, q)
is any normed linear space and v € V', we write |- ||, , = || - ||, and denote the
corresponding ball B, , simply by B,.

If U and V are two systems of weights on X, then we write U < V whenever
for given u € U there is some v € V such that u(z) < v(z) for all z in X.
In this case, we have CVy(X,E) C CUy(X,E), CV,(X,E) C CU,(X, E) and
CV,(X,E) C CU,(X, E) as well as the inclusion map is continuous in all the
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three cases. If U <V and V < U, then we say that U and V are equivalent
systems of weights on X.

The spaces CVy(X) and CV;(X) were first introduced by Nachbin [34], and
the vector-valued spaces CVy(X, E), CV,(X, E) and CV,(X, E) were studied
in detail by Bierstedt [4] and Prolla [38]. Most of the commonly encountered
spaces of continuous functions in analysis ([5, 61, 62, 41]) are the weigthted
spaces as is evident from the following examples.

Let Ny denote the characteristic function of a subset F' of X, and let us
distinguish the following systems of weights on X:

1=1(X) = {aRx : a > 0},

K=K(X)={aRg:a>0,K C X, K compact},

and U = U(X) is the family consisting of all weights vanishing at infinity on
X.

EXAMPLE 2.1. (a) C13(X, E) = (Co(X, E),u), C1,(X, E) = (Cp(X, E),u),
and C1,(X, F) = (Cy(X, E),u), where u in each case denote the topology of
uniform convergence on X.

(b) CKo(X,E) = CK,(X,E) = CKy(X,E) = (C(X, E),c-op) where c-op
denotes tha compact open topology.

(c) CUy(X,E) = CU(X,E) = CU(X,E) = (Cy(X, E), Bo), where 3, denotes
the substrict topology.

For more information on weighted spaces of continuous functions, we refer to
Summers [57] and Ruess and Summers [39].

3. APPEARANCES OF WCOs

As far as we know, the earliest appearance of a composition transformation
in the literature was known in 1871 from a paper of Schroéder [40] in which
for a given mapping 7', a function f and a number « are to be found such that
foT(z) = af(z) for all z in some domain. A solution to this has been given
by Kdenigs [24] in 1884 for the case when domain is the unit open disk and T
is an analytic map.

The appearance of WCOs in the literature is in the classical work of Banach
and Stone (see, [10]) while characterizing surjective isometries between spaces
of continuous functions. The result says that, for compact Hausdorff spaces
X and Y, if A: C(X) — C(Y) is a surjective isometry, then A = W, r,
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where T: Y — X is a homeomorphism and 7 € C(Y) with |7(y)| = 1 for all
y in Y. The classical Banach-Stone Theorem has been extended in various
directions (see, for example, Jerison [21], Cambern [6], Lau [29], Behrends [3],
and Pathak [37]).

WCOs also appeared in the work [2] of Banach on characterization of
isometries of L?[0,1], where 1 < p < oo, p # 2. Lamperti [27] generalizes
these results of Banach to the spaces LP(X) for any o-finite measure space
X, which have been further generalized by Cambern [7] to the vector valued
setting.

Isometries of H?-spaces are WCOs (see, for example, Hoffman [18], Forelli
[14], Cambern and Jarosz [8] and Lin [30]).

An operator A on a function module has the disjoint support property if
and only if A = W, 1 for some 7 and T (see [9]). A special case of this is a result
of Jamison and Rajagopalan [20]. Using the theory of WCOs, Feldman and
Porter [13] and Kitover [23] respectively studied lattice homomorphisms and d-
homomorphisms between Banach lattices. Recently, Latushkin and Stépin [28]
made use of these operators in the study of linear extensions of dynamical
systems, the theory of C*-algebras and the theory of differential equations.

4. WCOs oN WEIGHTED SPACES

In order to avoid some minor problems and to have a healthier development
of the theory, we shall require the following modest conditions on ingredients
generating the weighted spaces of continuous functions:

(4.a) X is a completely regular Hausdorff space.

(4.b) V is a system of weights on X.

(4.c) E is a non-trivial LCS.

(4.d) Corresponding to each z € X, there is an f, € C'Vy(X) such that f,(z) #
0.

In case X happens to be locally compact, (4.d) is automatically satisfied.
Since product of two weights is again a weight (cf. [57]), it follows that for
any m € C(X) [or m € C(X, E) and 0 # p € cs(E)], the set

Virnl={v-|r|:veV} Jor V-por={v-pom:veV}

is a Nachbin family on X. Further if 7 is nonzero at every point of X, V - |7
[or V - po ] is a system of weights on X. Again, if T' is a continuous selfmap
on X, then the set VoT ={voT :v € V} is a system of weights on X.
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A detailed study of composition operators on the weighted spaces of scalar-
valued continuous functions has been made by Singh and Summers [56], and
these results are carried over to the weighted spaces of vector-valued con-
tinuous functions in [46]. When 7 is a scalar or vector-valued function on
X, the characterizations of multiplication operators and WCOs on CV;(X)
and CV,(X, E), where {1 € 0,b}, have been obtained by Singh and Manhas
([43, 48]), and the authors ([51, 54]). For the operator-valued weights, the
characterizations are given by Singh and Manhas ([44, 49]) and the authors
([52, 53]).

Before presenting these results we would like to mention here that the proof
of all these characterizations uses more or less the same technique as presented
in [56].

WCOs oN CV,(X) AND CVy(X). Before giving characterization of
WCOs on CV,(X) we first consider the following proposition, a proof of which
follows from [56, Lemma 2.1] by taking v - |7| in place of v.

PROPOSITION 4.1. Suppose m € C(X) and T is a continuous selfmap on
X. If Wy r: CVo(X) = CV,(X) is continuous, then V - || <V oT.

THEOREM 4.2. Let m € C(X) and T be a continuous selfmap on X. Then
W, risa WCO on CV,(X) if and only if V - |n| <V o T.

Proof. We only prove the sufficient part as the necessary part follows from
Proposition 4.1 above. If V - |x] < V o T, then for given v € V, there exists
u € V such that v(z)|r(z)| <woT(z) for all z in X. Now, for all f in CV,(X),
we have

(W fllo = llm- foTlly <|f o Tlluor < {[fllu < o0,

which is enough to conclude that W, 1 is a WCO on CV,(X). 1

The condition that V - |r| < V o T is necessary and sufficient for W, r to
be a WCO on CV,(X) as we see in Theorem 4.2 above, but in case of CV,(X)
this condition is not sufficient though it is necessary as the following example
shows:

EXAMPLE 4.3. Let X = N with the discrete topology, V = 1(X), and
suppose 7 and T are constant maps given by m(n) = 1 and T'(n) = 3 for all n
in N. Then V- |r| <V oT but W, r is not a WCO on CVu(N) (= ¢p). It is
not even an into map, for if f(n) = 1/n then f € ¢y but W, +f & co.
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Thus we require some more conditions on the pair (7, T') so that W, r is a
WCO on CV,(X). In order to present such a condition in the next theorem,
we need the following definition:

If u is any weight on X and € > 0, then define N (u,¢) = {z € X : u(z) > €}
which is a closed subset of X because u is upper-semicontinuous.

THEOREM 4.4. Let m € C(X) and T be a continuous selfmap on X. Then
W, risa WCO on CVy(X) if and only if (i) V - |[w| <V o T, and (ii) for each
v €V, e >0 and compact subset K of X, T"'(K)NN (v -|r|,€) is a compact
subset of X.

Proof. Tt follows from Theorem 2.3 of [56] by replacing v by v - |7|. 1§

WCOs oN CV, (X, E) AND CVy(X, E). Here we have three cases accord-
ing to the range of function 7, which may be contained in K, E or B(FE). Let
us consider the case when m is an operator-valued function on X. We use
By (E) to denote the space B(E) of all operators on the LCS E equipped with
the topology of uniform convergence on bounded subsets of F. This locally
convex topology on B(E) is induced by the family {|| - ||, x : p € cs(E), K C
E, K bounded} of seminorms, where

[Allp,ic = sup{p(A(t)) : t € K}, A€ B(E).

"THEOREM 4.5. Let n € C(X, B,(E)) and T be a continuous selfmap on X,
and assume that m(X) is equicontinuous. Then W, 7 is a WCO on CV, (X, E)
if and only if for each (v,p) € V x cs(E), there exists (u,q) € V x cs(E) such
that v(z)p(m(z)t) <woT(z)q(t) for all z inz and t in E.

The condition of the above Theorem is not sufficient for W, 7 to be a WCO
on CVy(X, E) as we have already noted in Example 4.3. The condition under
which the map W, r is a WCO on CVy(X, E) is presented in the following
theorem:

THEOREM 4.6. Let m € C(X,B,(E)) and T be a continuous selfmap on
X. Assume that X is also a kg-space. Then W, r is a WCO on CV,(X, E)
if and only if (i) for each (v,p) € V x cs(E), there exists (u,q) € V x cs(E)
such that v(z)p(m(z)t) < uo T(x)q(t) for all z in X and t in E, and (ii) for
each (v,p) € V x ¢s(E), € > 0, and compact subset K of X, T7'(K) N {xz :
v(z)p(r(x)t) > €} is a compact subset of X for all nonzero t in E (X is called
a kg-space if a function f: X — R is continuous when its restriction to every
compact subset K of X is continuous).
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Now,we consider the case when 7 is a vector-valued function on X. Here
we assume that E is a Hausdorff locally convex algebra (briefly, written as

LCA).

THEOREM 4.7. Assume that F is a LCA, and let 7 € C(X,FE) and T
be a continuous selfmap on X. Then W, is a WCO on CV,(X, E) if and
only if for each (v,p) € V x cs(E), there exists (u,q) € v x c¢s(E) such that
v(z)p(m(z)t) <wuwoT(z)q(t) for all x in X and t in E.

The condition of the above theorem is not sufficient for W, r to be a WCO
on CVy(X, E) (cf. Example 4.3), and a necessary and sufficient condition for a
map W, 1 to be a WCO on CVy(X, E) is presented in the following theorem:

THEOREM 4.8. Assume that F is a unital LCA in which multiplication is
jointly continuous, and let m € C(X, E) and T be a continuous selfmap on X.
Then W, 7 is a WCO on CV,y(X, E) if and only if (i) for each (v,p) € V xes(E),
there exists (u,q) € V x ¢s(E) such that v(z)p(n(z)t) < uo T(x)q(t) for all
z in X and t in E, and (ii) for each (v,p) € V x ¢s(E), € > 0 and compact
subset K of X, T"*(K)N N(v-pom,e) is a compact subset of X.

In the third case when 7 is a scalar-valued function on X, we can write the
corresponding results characterizing WCOs on CV, (X, E) and CV, (X, E) from
Theorem 4.7 and Theorem 4.8 respectively.

Some examples of WCOs on weighted spaces of continuous functions are
presented to illustrate the theory. As already noted in section 1, W,  is
a WCO on CV;(X, E) whenever M, and C7 are respectively multiplication
operator and composition operator on CV;(X,E), where ¢ € {b,0}. But it
would be interesting to observe that even if one of 7 or T does not induce the
corresponding operator, the pair (7, T) may still induce a WCO. This we shall
present in the following examples:

EXAMPLE 4.9. Let X = N with the discrete topology and V = {av : a >
0}, where v(n) = n for all n in N. Define 7(n) = 1/n for all n in N and 7T as
follows:

T(n) vn if n is a perfect square
n) =
i otherwise .

Then one can easily check that V- 7| <V, VLV oT. but V-|r| < VoT.
In view of Theorem 4.2, it follows that W, r is a WCO on CV,(N) but Cp is
not an operator on C'V,(N).
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EXAMPLE 4.10. With X and V as in the above Example 4.9, if we define
m(n) = nand T(n) = n® for all n in N, then V- 7] £ V, V <V oT and
V-|n| < VoT. Again in view of Theorem 4.2, M, is not an operator on
CV,(N) but W, 7 is a WCO on CV,(N).

ExAMPLE 4.11. Let X = (0,00) with the usual relative topology and let
V = {av : « > 0} where v(z) = 1/z for all z in X. Define n(z) = z* and
T(z)=1/z for all z in X. Then V - |7| £ V and V £ V o T so that m and T
do not induce the corresponding operator on CV;(X), in view of Theorem 4.2.
However, V - |7| <V oT holds and therefore W, r is a WCO on CV,(X).

For more examples of WCOs on weighted spaces of continuous functions,
we refer to [52].

5. Comract WCOs

The study of compact weighted endomorphisms of the Banach algebra
C(X) of continuous functions on a compact Hausdorff space X was initiated
by Kamowitz [22] in 1981. If 7 € C(X) and T is a continuous selfmap on
X, then W, r is a WCO on C(X) (cf. Theorem 4.2). Kamowitz proved a
WCO W, r on C(X) is compact if and only if each connected component of
N(m) = {z € X : n(z) # 0} is contained in some open set on which 7' is
constant. Singh and Summers [55], while observing that, for a completely
regular Hausdorff space X, Kamowitz’s condition does not guarantee that
a WCO on C,(X) is compact, extended his result in two ways: firstly, by
improving the condition and secondly, by placing the result in the setting of
vector-valued continuous functions. If # € C(X) and € > 0, then the subset
{z € X : |m(z)] > €} of X is denoted by N(m,e¢).

THEOREM b5.1. Let X be a completely regular Hausdorff space, E a Ba-
nach space, T" a continuous selfmap on X and w € Cy(X) such that 7 is not
identically zero on X. Then

(5.1.1) the WCO W, r on C,(X,E) is compact if and only if E is finite
dimensional and T'(N (m,€)) is finite for every e > 0, and

(5.1.2) W, r is a weakly compact operator on C,(X, E) if and only if E is
reflexive and T (N (m, €)) is finite for every e > 0.

Feldman [12] characterized compact WCOs on more general function spaces
called Banach F-lattices, which also includes LP-spaces and Banach lattices.
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In a particular setting his result yields 5.1.1 for C,(X). An analogue of 5.1.1
for unweighted composition operators on Cy(X, E) with a different proof has
been presented in [42] in form of the following theorem:

THEOREM 5.2. Let X be a completely regular Hausdorff space, ¥ a Ba-
nach space and assume that T is a continuous selfmap on X. Then the compo-
sition operator Cp on Cy(X, E) is compact if and only if E is finite dimensional
and T'(X) is finite. -

The following corollary is an immediate consequence of this theorem.

COROLLARY 5.3. If E is infinite dimensional Banach space, then no com-
position operator on Cy(X, E) Is compact.

For a compact Hausdorff space X and a Banach space E, compact WCOs
on C(X, ) have been studied by Jamison and Rajagopalan in [20]. They have
extended the result of Kamowitz [22] by carrying it over to C(X, E) with 7
taking values in B(FE), and by weakening his hypothesis on the selfmap T by
not requiring it to be continuous everywhere which is a part of the hypothesis
in the paper of Kamowitz [22]. The following example illustrates this latter
fact:

EXAMPLE 5.4. Let X = [0, 1] with the usual relative topology and £ = K
Define w(z) = 0 for all z € X and T as follows:

T(x) 1 if z is a rational number
:I; =
0 otherwise.

Then the corresponding operator W, ¢ is continuous (even compact) but 7' is
discontinuous at every point of X.

THEOREM 5.5. ([20]) Let T: X — X and 7w : X — B(FE) be mappings
such that Wy is a WCO on C(X, E). Then W, r is compact if and only if
the following conditions hold:

(5.5.1) T is continuous on N(m) = {x € X : n(z) # 0}.

(56.5.2) m: X — B(F) is continuous in the uniform operator topology.
(5.5.3) For every compact subset K of N(rm), T'(K) is finite.

(5.5.4) m(x) is a compact operator on E for all z in X.
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(5.5.5) For every bounded sequence {f,} in C(X,E) and ¢ > 0, there is a
subsequence {f,, } and a neighbourhood G, containing Z such that

WWerfn (x)] <€ forevery z in G,
where Z = {z € X : W, rf,(z) = 0 for all n}.

Let E* denote the dual of E, and let A be a function algebra on X (i.e. a
closed subalgebra of C'(X) which contains the constant functions and separates
points of X). Then the space A(X, E) defined as

AX,E)={feC(X,E):e"of€ Aforalle” € E*}

is a Banach space relative to the supremum norm of C'(X, E). An analogue
of Theorem 5.5 characterizing compact WCOs on the space A(X, E) has been
obtained by Takagi in [59] which also includes results of his paper [58] in the
function algebra setting. He proved that the condition 5.5.5 of Theorem 5.5 is
removable and that no composition operator on A(X, F) is compact when F
is infinite dimensional. When A = C(X), A(X, E) is same as C(X, E) and in
this case Theorem A of [59] yields the following result without condition 5.5.5:

THEOREM 5.6. Let X be a compact Hausdorff space, E a Banach space
and suppose that W, 7 is a WCO on C(X, E). Then W, r is compact if and
only if the following conditions hold:

(5.6.1) for each connected component of C of N(r), there exists an open set
G containing C such that T is constant on G.

(5.6.2) m: X — B(F) is continuous in the uniform operator topology.
(5.6.3) m(z) Is a compact operator on E for all z in X.

In case F is infinite dimensional, the identity operator I on F is noncom-
pact and therefore the map w(z) = I for all z in X does not satisfy condition
(5.6.3) of Theorem 5.6 above. Hence we have

COROLLARY 5.7. If E is infinite dimensional, then no composition opera-
tor on C(X, E) is compact.

In an another paper [60], Takagi and Wada have studied weakly compact
WCOs on A(X, E). Chan [9] has also worked in this direction: he proved that
some of the conditions in Theorem 5.5 are redundant and gave a generalized
version of Theorem 5.1. For a locally compact Hausdorff space X and a Banach
space [, the following result of [9, Theorem 2.1] characterizes compact WCOs
on Co(X, E):
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THEOREM 5.8. Let W, r be an operator on Cy(X, E). Then W, r is com-
pact if and only if the following conditions hold:

(5.8.1) Each m(z) is a compact operator on E.

(5.8.2) m: X — B(F) is continuous in the uniform operator topology and
the scalar function x — ||7(z)|| vanishes at infinity on X.

(5.8.3) T is locally constant on N(n) = {z € X : w(z) # 0}.

Remark. Condition (5.8.3) is equivalent to condition (5.5.3). As denoted
earlier, let us put, for an operator-valued function m on X, N(m,¢€) = {z €
X :||w(x)|| > €} for every € > 0. When X is compact, Singh and Summers
condition that “T'(N(m,e€)) is finite for every € > 0” is equivalent to (5.8.3)
above.

COROLLARY 5.9. Let W, 1 bea WCO on C(X, E). Then W, 7 is compact
if and only if the following conditions hold:

(5.9.1) Each w(z) is a compact operator on E.
(5.9.2) m: X — B(FE) is continuous in the uniform operator topology.
(5.9.3) T(N(m,e)) is finite for every € > 0.

COROLLARY 5.10. ([9]) Let X be a completely regular Hausdorff space, a
Banach space, and suppose that W, r is a WCO on C,(X, E). Then W, 1 is
weakly compact if and only if the following conditions hold:

(5.10.1) Each w(z) is a weakly compact operator on E.
(5.10.2) T(N(m,€)) is finite for every € > 0.

Remark. Corollary 5.9 and Corollary 5.10 are generalized versions of 5.1.1
and 5.1.2 respectively.

In function algebra setting, Lindstrom and Llavona [31] have obtained re-
sults about compact and weakly compact WCOs on the locally convex algebra

(C(X)’ C"Op)'

PROPOSITION 5.11. ([31]) Let X and Y be completely regular Hausdorff
space, where Y is also a kg-space. Then the composition operator Cp: (C(X),
c-op) = (C(Y),c-op) is compact if and only if the inducing map T: Y — X
is locally constant.
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THEOREM 5.12. ([31]) Let X andY be completely regular Hausdorff spa-
ces, where Y is also a kg-space, and suppose that Cr: (C(X),c-op) —
(C(Y),c-op) is a composition operator. Then the following are equivalent:

(5.12.1
(5.12.2
(5.12.3
(5.12.4

Cyr is compact.
Cyp is weakly compact.
T is locally constant.

For every compact subset K of Y, T'(K) is a finite subset of X.

~— . '

Let us now consider compactness and weak-compactness of WCO on weigh-
ted spaces of vector-valued continuous functions. In [50], Manhas and the
authors have studied compact composition operators on weighted spaces

CV,(X, E), wherei € {b,0}. The following results also from [50] are needed
in presentation of this characterization:

PRrROPOSITION 5.13. Let V be any system of weights on a completely reg-
ular Hausdorft space X and E be a LCS. Then the following statements are
equivalent:

(5.13.1)
(5.13.2) Foreveryt € E, 1, € CV,(X, E) (respectively, CVy(X, E)).

(5.13.3) Every constant selfmap T on X induces a composition operator on
CV,(X, E) (respectively CVy(X, E)).

Each v € V' is bounded (respectively, vanishes at infinity) on X .

LEMMA 5.14. Let V be a system of weights on X and let xo € X. Then
there exists an open set containing xy on which each v € V is bounded.

The following result [50, Theorem 3.2] shows that collection of compact
composition operators on weighted spaces is not too large if the underlying
space X is connected and the space F is finite dimensional.

THEOREM 5.15. Let V be a system of weights on X satisfying the condi-
tion 5.13.1. Also assume that X is connected and E is a finite dimensional
LCS. Then a composition operator Cp on CV,(X, E) (or CVy(X, E)) is com-
pact if and only if T' is constant.

Proof. We only give the proof of direct part. If zy, 2, € X such that y, =
T(x,) # T(xy) =y, then by Lemma 5.14 there exists an open set G containing
11 on which each v € V is bounded and y, € G. Consider a continuous
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function f: X — [0,1] such that f(y;) = 1 and f(z) = 0 for all z € G.
Choose ¢ € ¢s(E) and t € E such that ¢(t) # 0 and define f, € CV,(X, E)
as fi(z) = f(z)t/q(t) for all z € X. Also write g,(z) = f" ' (z)f:(z) for all
n > 1, where fO(z) =1 and f"'(z) = f(z)f" *(z) for all z € X and n > 2.
Then F = {g, : n > 1} is a bounded subset of CV,(X, E) and so if Cr is
compact, we have a subsequence {g,, } of {g,} and a function g € CV,(X, E)
such that {Crg,, } converges to ¢g. From this, we conclude that ¢ o g,, (T'(z))
converges to gog(z) for all z in X, which implies that gog(z) is a characteristic
function with go g(z;) = 1 and q o g(z,) = 0. This is impossible since X is
connected and g o ¢ is continuous on X. Thus we must have T'(z;) = T(xz,)
for all z,zy € X, showing that T is a constant map. i

Remark. (1) This theorem is a generalization of Theorem 5.11.
(2) In case E is infinite dimensional, the constant map may not induce
compact composition operators as the following example shows:

EXAMPLE 5.16. Let X = [0, 1] with the usual relative topology, V = 1(X)
and F = ¢y. Then C'V, (X, F) is a Banach space with the supremum norm. Let
T be the constant map given by T'(z) = 1/3 for all z in X. Then Crf(z) =
{f.(1/3)} for f ={f,} shows that Cr is not compact.

In a recent work [32] Manhas and Singh have studied compact and weakly
compact WCOs on weighted spaces, from which follows the results of Chan [9]
and some results of Lindstrom and Llavona [31].

Before giving Theorem 2.1 of [32] which characterizes compact WCOs on
weighted spaces, we first require the generalized Arzela-Ascoli Theorem from
[39] in the following form:

THEOREM 5.17. Let X be a completely regular Hausdorff kp-space and E
be a quasicomplete LCS. Then a subset H of

(CI;(Xv E)aﬂO) = OZ/IO(Xa E)
is relatively compact if and only the following conditions hold:

(5.17.1) H is equicontinuous.
(6.17.2) H(xz) = {h(z): h € H} is relatively compact in E for all x in X.
(5.17.3) H is uniformly bounded.
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THEOREM 5.18. Let X be a completely regular Hausdorff kg-space, E a
quasicomplete LCS and V = U, and assume that 7: X — B(E) and T: X —
X are continuous mappings such that W, r is a WCO on CVy(X, E). Then
W r is compact if and only if the following conditions hold:

(5.18.1) Each m(z) is a compact operator on E.
(5.18.2) T is locally constant on N ().

" Proof. Suppose W, r is a compact operator on CVy(X,FE). Then using
Theorem 5.17 it is easy to show (5.18.1). To prove (5.18.2), suppose that 7' is
not locally constant on N(m). Then there exists an element z, in N () such
that 7" is not constant on any open set containing zy in X. Let A be an open
neighbourhood base at zo in X. Then there is a net {z¢ : G € A} in X such
that z¢ — 2o and T'(zg) # T(zo) for each G € A. Let fo € C(X) such
that 0 < fo <1, fa(T(z0)) = 1 and fe(T(zg)) = 0, and choose t € E and
q € cs(F) such that g(m(zo)t) # 0. If we define g5 (X) = fg(z)t for all z in
X, then M = {g¢ : G € A} is a bounded subset of CV,(X, E). But since

sup{q[War r9c(rc) — Wrrga(no)] : g € A} = q(m(zo)t) > 0,

for all G € A, we have a contradiction to the equicontinuity of W, r(M).
Conversely, assume that the conditions (5.18.1) and (5.18.2) hold. Then
using Theorem 5.17 it can be easily shown that W, r is compact. i

Remark. Theorem 5.18 is a generalized version of 5.11.

THEOREM 5.19. ([32]) Under the hypothesis of Theorem 5.18, a WCO
W, r on CVy(X, E) is weakly compact if and only if the following conditions
hold:

(5.19.1) Each n(z) is a weakly compact operator on E.
(5.19.2) T is locally constant on N ().

COROLLARY 5.20. Under the hypothesis of Theorem 5.18, the following
conditions are equivalent when FE is finite dimensional:

(5.20.1) W, 7 is a compact operator on CVy(X, E).
(5.20.2) W, 1 is a weakly compact operator on CVy (X, E).
(5.20.3) T is locally constant on N(r).
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Remark. (i) Theorem 5.19 is a generalization of Theorem 3.1 of [9] and
Corollary 5.10.

(ii) In a particular setting Corollary 5.20 reduces to Theorem 5.12 and
Theorem 5.15.

Now let us consider the following example from [32] which certifies the
distinction from the special situations considered earlier.

EXAMPLE 5.21. Let X = N, with the discrete topology, and E = (C(R),
c-op). Define T: N — N as

Tn) — {n—l if n is even

n+1 otherwise,

and m: X — B(E) as m(n) = n?4, for all n in N, where 4,: E —» E is
given by A, f(t) = f(n) for all £ € R and for all f € E. Then clearly T is
locally constant and each m(n) is a compact operator on E. Let V = K(N).
Then clearly 7 and 7" induce the compact (weakly compact) WCO W, r on
CVy(X, E). On the other hand if we take V = {aw : @ > 0}, where v(n) = 1/n
for alln € N, then 7 and T' do not induce the compact (weakly compact) WCO
W, on CVo(X, E). Moreover, in this case W, r is not even an operator on
CVo(X, E). Thus we have seen that 7: X — B(FE) is a continuous operator-
valued mappings such that each 7(z) is a compact (weakly compact) operator
on £ and T: X — X is locally constant, even then W, 1 fails to be a compact
WCO on CVy(X, E).

This example illustrates the distinction from the situation considered in
(19, 31, 59], and it further shows that the compactness (weak compactness) of a
WCO is very much influenced by the behaviour of these three variables,namely,
V, mand T.
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