On the Poles of the Local Resolvent

Teresa Bermúdez¹, Manuel González² and Antonio Martinón¹

¹Depto. de Análisis Matemático, Univ. de la Laguna, 38271 La Laguna (Tenerife), Spain ²Depto. de Matemáticas, Univ. de Cantabria, 39071 Santander, Spain

AMS Subject Class. (1991): 47A11

Received November 6, 1995

1. Introduction

Let X be a complex Banach space and let $T \in L(X)$ be a continuous linear operator on X. If T has the Single Valued Extension Property (see the definition in Section 2), then for every $x \in X$ there exists a unique maximal analytic X-valued function \widehat{x}_T , the local resolvent function of T at x, defined on an open set $\rho(x,T)$, which satisfies $(\lambda - T)\widehat{x}_T(\lambda) = x$, everywhere. The set $\sigma(x,T) := \mathbb{C} \setminus \rho(x,T)$ is a compact subset of the spectrum of T called the local spectrum of T at x.

The problem that we are concerned with in this paper is the characterization of the poles of the local resolvent \hat{x}_T . It is well-known [6], [9] that a complex number α is a pole of the resolvent $(\lambda - T)^{-1}$ of T if and only if $X = N(\alpha - T)^k \oplus R(\alpha - T)^k$ for some positive integer k, where $N(\alpha - T)^k$ and $R(\alpha - T)^k$ are the kernel and the range of $(\alpha - T)^k$, respectively. In this case we have $N(\alpha - T)^{k+l} = N(\alpha - T)^k$ and $R(\alpha - T)^{k+l} = R(\alpha - T)^k$, for every l; i.e., $\alpha - T$ is a finite-chain operator.

We show that α is a pole of \widehat{x}_T if and only if there exists a unique decomposition x=y+z, with $y\neq 0$, $y\in N(\alpha-T)^k$ and \widehat{z}_T analytic at α . We observe that \widehat{z}_T analytic at α implies that $z\in R(\alpha-T)^k$ for every k, but the existence of the decomposition x=y+z, with $y\neq 0$ and $y\in N(\alpha-T)^k$ and $z\in R(\alpha-T)^k$ for some k is not sufficient to imply that \widehat{x}_T has a pole at α , as it is shown by Example 1. As an application, we describe a class of operators, that includes the totally paranormal operators [7], for which the poles of the local resolvent function are always of order one. Finally we introduce the locally finite-chain operators at $x\in X$ as those operators T such that $\sigma(T^{n-1}x,T)\neq \sigma(T^nx,T)$ for some positive integer n or $0\notin \sigma(x,T)$, and

show that T is finite-chain if and only if is locally finite-chain at every $x \in X$.

2. Preliminaries

Given an operator $T \in L(X)$, a complex number λ belongs to the resolvent set $\rho(T)$ of T if there exists $(\lambda - T)^{-1} =: R(\lambda, T) \in L(X)$. We denote by $\sigma(T) := \mathbb{C} \setminus \rho(T)$ the spectrum of T. The resolvent map $R(.,T) : \rho(T) \to L(X)$ is analytic.

Moreover, given $x \in X$, we say that a complex number λ belongs to the local resolvent set of T at x, denoted $\rho(x,T)$, if there exists an analytic function $w: U \longrightarrow X$, defined on a neigbourhood U of λ , which satisfies

$$(1) \qquad (\mu - T)w(\mu) = x,$$

for every $\mu \in U$. The local spectrum set of T at x is $\sigma(x,T) := \mathbb{C} \setminus \rho(x,T)$. Since w is not necessarily unique, a complementary property is needed to prevent ambiguity.

An operator $T \in L(X)$ satisfies the Single Valued Extension Property (hereafter referred to as SVEP) if for every analytic function $h: U \longrightarrow X$ defined on an open U, the condition $(\lambda - T)h(\lambda) \equiv 0$ implies $h \equiv 0$.

If T satisfies the SVEP, then for every $x \in X$ there exists a unique analytic function \widehat{x}_T defined on $\rho(x,T)$ satisfying (1), which is called the *local resolvent function of* T at x.

If $T \in L(X)$ satisfies the SVEP, then it has two basic properties:

(2)
$$\sigma(x,T) = \emptyset \iff x = 0$$

(3)
$$\sigma(x+y,T) \subset \sigma(x,T) \cup \sigma(y,T).$$

See [3], [4] and [5] for further details.

M. Radjabalipour [8, Theorem 2.3] shows the following theorem about the Local Riesz Decomposition.

THEOREM 1. Suppose $T \in L(X)$ has the SVEP and let F_1 and F_2 be two disjoint compact sets. If $x \in X$ satisfies $\sigma(x,T) \subset F_1 \cup F_2$, then there exists a unique decomposition $x = x_1 + x_2$ so that $\sigma(x_i,T) \subset F_i$ (i = 1,2).

The following corollary is immediate considering the above theorem and the property (3).

COROLLARY 1. Assume that $T \in L(X)$ has the SVEP and let $x \in X$. If $\sigma(x,T) = \sigma_1 \cup \sigma_2$, where σ_1 and σ_2 are disjoint closed sets, then there exists a unique decomposition $x = x_1 + x_2$, where $\sigma_j = \sigma(x_j, T)$, (j = 1, 2).

3. Poles of the Local Resolvent

For $T \in L(X)$, the poles of the resolvent operator $R(\lambda, T)$ have been characterized as follows [9, Theorem V.10.1]:

 α is a pole of $R(\lambda, T) \iff$ there exists a positive integer k so that

$$X = N(\alpha - T)^k \oplus R(\alpha - T)^k.$$

We will try to obtain a similar result for the local resolvent function \hat{x}_T . Taking into account [4, Proposition 1.5] and [2, Remark 1.5] we have

$$\sigma((\alpha - T)x, T) \subseteq \sigma(x, T) \subseteq \sigma((\alpha - T)x, T) \cup \{\alpha\}$$

and from this fact we can easily derive the following chain of inclusions for the local spectra

(4)
$$\sigma(x,T) \supseteq \sigma((\alpha-T)x,T) \supseteq \cdots \supseteq \sigma((\alpha-T)^n x,T) \supseteq \cdots$$

where α is the only point which may make these subsets different. Hence there is at most an inclusion in (4) which is not an equality.

We recall a characterization of the poles of the local resolvent function obtained in [1, Theorem 1].

PROPOSITION 1. Assume that $T \in L(X)$ has the SVEP and let $x \in X$. Then $\sigma((\alpha - T)^n x, T) \neq \sigma(x, T)$ if and only if α is a pole of \widehat{x}_T of order $\leq n$.

From this result we obtain the following consequences which we will need later.

COROLLARY 2. Suppose $T \in L(X)$ has the SVEP and let $x \in X$. Then the following assertions hold:

- (i) If \hat{x}_T has a pole of order n in α , then $\alpha \in \sigma_p(T)$, the point spectrum of T.
- (ii) The local resolvent function \hat{x}_T has a pole of order n at α if and only if $\alpha \in \sigma((\alpha T)^{n-1}x, T) \setminus \sigma((\alpha T)^n x, T)$.
- (iii) If $\lambda \in \rho(x,T)$ and $y = \hat{x}_T(\lambda)$, then \hat{x}_T has a pole of order n at α if and only if so has \hat{y}_T .

Using Corollary 1 and 2 we obtain our first characterization of the poles of the local resolvent.

THEOREM 2. Assume that $T \in L(X)$ has the SVEP and let $x \in X$. Then the following assertions are equivalent:

- (i) α is a pole of \hat{x}_T of order n.
- (ii) There exists a unique decomposition x = y + z such that $y \in N(\alpha T)^n \setminus N(\alpha T)^{n-1}$, and $\sigma(z, T) = \sigma(x, T) \setminus \{\alpha\}$.

COROLLARY 3. Suppose $T \in L(X)$ has the SVEP and satisfies $X = R(T^n) \oplus N(T^n)$. Given $x \in X$ we have that $0 \in \rho(x,T)$ if and only if $x \in R(T^n)$.

We observe that the condition $\alpha \notin \sigma(z,T)$ in the previous theorem implies $z \in R(\alpha - T)^k$ for every k. However, x = y + z, where $y \in N(\alpha - T)^k \setminus N(\alpha - T)^{k-1}$ and $z \in R(\alpha - T)^k$, does not imply that α is a pole of \widehat{x}_T of order k, as shown in the following example.

EXAMPLE 1. Let T be the operator on the Hilbert space $\ell_2(\mathbb{N})$ defined by $T(e_1) = 0$ and $T(e_{n+1}) = e_{n+2}/(n+1)$. It is clear that $\sigma(T) = \{0\}$, hence T satisfies the SVEP. Taking $x := e_1 + e_3 \neq 0$, we have $\sigma(T^n x, T) = \{0\}$ because $T^n x \neq 0$ for every n. Hence 0 is an essential singularity of \widehat{x}_T by Corollary 2. However x has a unique descomposition $x = y + z = e_1 + e_3$, where $y \in N(T)$ and $z \in R(T)$.

Notice that Theorem 2 implies that, if α is a pole of \widehat{x}_T of order n for some $x \in X$, then the operator $\alpha - T$ is not a finite chain operator of order n - 1.

Some interesting applications of Theorem 2 are obtained by considering special classes of operators.

In [3], Dollinger and Oberai proved that if $x \in N(\alpha - T)$, then $\sigma(x, T) = \{\alpha\}$. The converse implication is false in general; for example, if T is an injective quasinilpotent operator.

COROLLARY 4. Suppose $T \in L(X)$ has the SVEP and satisfies $N(\alpha - T) = \{x \in X : \sigma(x,T) \subseteq \{\alpha\}\}$. If $x \in X \setminus \{0\}$ and α is a pole of \hat{x}_T of order n, then n = 1.

Recall that an operator T is said to be totally paranormal if $\|(\lambda - T)x\|^2 \le \|(\lambda - T)^2x\|\|x\|$ for all $x \in X$ and for every $\lambda \in \mathbb{C}$.

Totally paranormal operators satisfy the hypothesis of Corollary 4 [7, Corollary 4.8]. Hence the poles of their local resolvent function are of order ≤ 1 . In particular this is true for hyponormal and normal operators on a Hilbert space.

Recall that M is a μ -space of T if M is an invariant subspace of T and we have $\sigma(x,T) = \sigma(x,T|M)$ for every $x \in M$.

PROPOSITION 2. Assume $T \in L(X)$ has the SVEP and there exists a positive integer k such that $X = N(\alpha - T)^k \oplus M$, where M is a μ -space of T. If $x \in X$ and α is a pole of \hat{x}_T of order n, then $n \leq k$.

Now we give another characterization of the poles of the local resolvent function, similar to the following well-known characterization of the points of the local resolvent given in [5, Theorem 2.2].

Let $T \in L(X)$, $x \in X \setminus \{0\}$ and $\alpha \in \mathbb{C}$. Then $\alpha \in \rho(x,T)$ if and only if there exists a number R > 0 and a sequence $(x_k)_{k=0}^{\infty} \subset X$ so that

- (i) $(\alpha T)x_0 = x$;
- (ii) $(\alpha T)x_k = x_{k-1}$; for $k \ge 1$,
- (iii) $||x_k|| \le R^k$, for $k \ge 0$.

THEOREM 3. Assume $T \in L(X)$ has the SVEP and let $x \in X$. Then $\alpha \in \mathbb{C}$ is a pole of \widehat{x}_T of order n > 0 if and only if there exists a number R > 0 and a sequence $(x_k)_{k=-n}^{\infty} \subset X$ so that

- (i) $(\alpha T)x_0 = x_{-1} x$.
- (ii) $(\alpha T)x_k = x_{k-1}$, for k > -n and $k \neq 0$; $(\alpha T)x_{-n} = 0$ and $x_{-n} \neq 0$.
- (iii) $||x_k|| \le R^k$, for $k \ge 0$.

Note that this result is also true when T does not satisfy the SVEP.

4. Locally Finite-Chain Operators

We consider the following integer indexes associated to $T \in L(X)$: the ascent of T, denoted by p(T), is the smallest non-negative integer p such that $N(T^p) = N(T^{p+1})$, or $p(T) = \infty$ if no such integer exists; and the descent of T, denoted by q(T), is the smallest non-negative integer q such that $R(T^q) = R(T^{q+1})$, or $q(T) = \infty$ if no such integer exists. Recall that $T \in L(X)$ is called a finite-chain operator if $p(T) < \infty$ and $q(T) < \infty$, hence p(T) = q(T) (see [6]).

In [9, Theorems V.10.1 & V.10.2] it is proved that α is a pole of the resolvent operator if and only if $\alpha - T$ is a finite-chain operator and $\alpha \in \sigma_p(T)$, the point spectrum of T. Note that Corollary 2 is similar to this result, using the following definition.

DEFINITION 1. Let $T \in L(X)$ and $x \in X$. We say that T is locally finite-chain at x if there exists a positive integer n such that $\sigma(T^{n-1}x,T) \neq \sigma(T^nx,T)$, or $0 \notin \sigma(x,T)$.

Observe that T is locally finite-chain at x if and only if there exists a nonnegative integer so that $0 \notin \sigma(T^n x, T)$.

In Theorem 4, we show the relation between finite-chain operators and locally finite-chain operators.

THEOREM 4. Assume $T \neq 0$ has the SVEP. Then T is a finite-chain operator if and only if T is a locally finite-chain operator at x, for every $x \in X$.

COROLLARY 5. Suppose $T \in L(X)$ has the SVEP and α is a pole of \widehat{x}_T for every $x \in X$. Then the order of the pole is always less or equal than a fixed integer n.

REFERENCES

- [1] BERMÚDEZ, T., GONZÁLEZ, M., MARTINÓN, A., Stability of the local spectrum, *Proc. Amer. Math. Soc.*, (to appear).
- [2] Bartle, R.G., Spectral decomposition of operators in Banach spaces, *Proc. London Math. Soc*, **20** (1970), 438-450.
- [3] DOLLINGER, M.B., OBERAI, K.K., Variation of local spectra, J. Math. Anal. Appl., 39 (1972), 324-337.
- [4] Erdelyi, I., Lange, R., "Spectral Decompositions of Banach Spaces", Springer, 1977.
- [5] ERDELYI, I., SHENGWANG, W., "A Local Spectral Theory for Closed Operators", Cambridge Univ. Press, 1985.
- [6] HEUSER, H.G., "Functional Analysis", Wiley 1982.
- [7] LAURSEN, K.B., Operators with finite ascent, *Pacific J. Math.*, **152** (1992), 323-335.
- [8] RADJABALIPOUR, M., Decomposable operators, Bull. Iranian Math. Soc. 9 (1978), 1L-49L.
- [9] TAYLOR, A.C., LAY, D.C., "Introduction to Functional Analysis", Wiley; New York, 1980.