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In this paper we survey a large part of the results on polynomials on
Banach 'spaces that have been obtained in recent years. We mainly look at
how the polynomials behave in connection with certain geometric properties
of the spaces. The paper is divided in 8 sections and includes a rather long
list of references.

Section 1 is an introduction to polynomials on Banach spaces. It includes
the polarization formulae and some important properties of superreflexive
spaces. Section 2 is devoted to Nachbin’s theorem on approximation of dif-
ferentiable functions, which provides a motivation to introduce the weakly
continuous polynomials, as we do in section 3. This section contains the main
results on polynomials whose restrictions to bounded subsets are weakly con-
tinuous, highlighting the relationship between this continuity property and the
containment of /4;.

In section 4 we study the action of polynomials and multilinear mappings
on sequences with upper and lower £,-estimates. This is applied to obtain con-
ditions for compactness and weak sequential continuity of polynomials. Sec-
tion 5 is devoted to the Dunford-Pettis property and the polynomial Dunford-
Pettis property. New conditions are given in this setting for weak sequential
continuity of polynomials. Section 6 focuses on the study of certain properties

tThese notes are an expanded version of the lectures given by the authors at the Con-
ference on Polynomials and Holomorphic Mappings in Infinite Dimensions, held in Dublin
in September 1994. The authors’ research was partially supported by DGICYT, Project PB
93-0452 (Spain).
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defined in terms of polynomials. We first look at the polynomially Schur and
polynomially Dunford-Pettis spaces, and investigate the relationship between
both classes. We consider the polynomial Grothendieck and Pelczyniski’s (V')
properties, and their relation to polynomial reflexivity, as well as Q-reflexivity.

In section 7 we introduce the so called properties (P) and (RP) of Banach
spaces. We show the interest of these properties in order to give estimates
by polynomials, and we mention a few open problems. Section 8 deals with
what is called polynomial continuity. We characterize the Banach spaces with
polynomially continuous norm and give some results on polynomial continuity
on ¢; and C(K) spaces.

The paper treats the various subjects in a rather complete form. Thanks
to the choice of references, we hope that reading the paper in detail will be
a natural and ordered way to introduce oneself into this interesting, current
subject in the field of Functional Analysis and its applications.

1. INTRODUCTION TO POLYNOMIALS

There are three approaches to the study of polynomials: by considering
restrictions to finite dimensional spaces, by using multilinear mappings, and
by means of tensor products. We confine ourselves to the second one.

In 1931-1932, Michal, a student of Fréchet, gave a series of lectures at
the California Institute of Technology, in which he outlined the relationship
between symmetric, m-linear forms and homogeneous polynomials. Further
work on the definition of polynomials between Banach spaces was carried
out by Michal and his students Clifford [71], Martin [72, 69], Highberg [50]
and Taylor [87]. For modern exposition on symmetric, m-linear forms and
homogeneous polynomials, standard references are [28] and [73] (see also [16]).

Throughout, X and Y will stand for Banach spaces over the field K (real
R or complex C), X* for the dual of X, and Bx for its closed unit ball.
We denote by £(™X,Y) the space of all continuous, m-linear mappings from
X™:= X x ™ x X into Y. If m = 1, we just have the continuous, linear
mappings (often referred to simply as operators), and the corresponding space
is denoted by L£(X,Y). We define £L(°X,Y) to be the set of all constant
mappings from X into Y, and this space is identified with Y in a natural
manner. When F = K, we write £(™X) in place of L(™X,K). The set of
natural numbers is denoted by N (from the context, it will be clear if it includes
0 or not).

To define continuous, m-homogeneous polynomials, we use the natural
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embedding, called the diagonal mapping A, : X — X™, given by
Ap(z) == 2™ = (z,™, z).

DEFINITION 1.1. A mapping P : X — Y is a (continuous) m-homogeneous
polynomial if it may be written in the form P = Lo A,,, where L € L("X,Y).
We say that m is the degree of P.

Let P(™X,Y) be the vector space of all continuous, m-homogeneous poly-
nomials from X into Y. If P € P(™X,Y), we can find L € L(™X,Y) so that
P(z) = L(z,...,z). Clearly, P(Az) = A™P(z), for all A € K and z € X.
A continuous polynomial P from X into Y is any finite sum of continuous,
homogeneous polynomials from X into Y. The degree of P is the maximum
degree of its summands. The space of all continuous polynomials from X into
Y is denoted by P(X,Y).

EXAMPLE. If L is a bilinear form on K", n € N, then there exists an n x n
matrix A = (a;;), such that L(z,w) = zAw', where z = (z1,...,2,) € K",
w = (wy,... ,w,) € K* and w' is the transpose of w. Thus,

L(z,w) = Z Qi ZWj .

i,j=1

Hence, any K-valued continuous, two-homogeneous polynomial P on K" has
the familiar form N
P(z) = L(z,2) = Z aij2i%j .
ij=1

If we replace A by its associated symmetric matrix B = (A + A')/2, then
B = (by;) with b;; = (ai; + aj;)/2, and zAz" = zBz*, for every z € K". So,
A and B define the same continuous, two-homogeneous polynomial. The pre-
vious example, which is typical of the general situation, shows that different
multilinear forms may define the same polynomial. To obtain one-to-one cor-
respondence, we must restrict ourselves to symmetric, multilinear mappings.
We denote by L£,(™X,Y) the linear subspace of £L(™X,Y") consisting of all con-
tinuous symmetric, m-linear mappings. For each L € L(™X,Y), we can define
a symmetric, m-linear mapping, in a canonical fashion, given by

1
S(L)(xh amm) = Z L(:Ea'(l),'“ 7xcr(m)) )
m)

' 0€Sm
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where S,, is the set of all permutations of the first m natural numbers. We call
S the symmetrization operator. As a consequence of the polarization formula,
we shall show that the mapping A : £,(™X,Y) — P(™X,Y), given by A(L) =
L:=Lo A, is a vector space isomorphism. Therefore, to each P € P(™X,Y)
we can associate a unique symmetric, m-linear mapping P € £,(™X,Y) so that
P(z) = P(z,... ,z) = P(z™) for all z € X, and a linear, bounded operator
Tp: X — L, (™ X,Y) given by Tp(z)(z1,... ;Zm—1) = P(z,Z1,... ,Tpm_1)-
The n th Rademacher function 7, is defined on [0, 1] by

rn(t) := signsin 2"7t.

The following polarization formulae allow us to recover the values of a sym-
metric m-linear mapping from the values of the associated m-homogeneous
polynomial.

Polarization formulae
IfPeP(™X,Y)and L € L,(™X,Y) are such that L = P, then

(a) L(zy,... ,zy) = % /01 ri(t) ... rm(t) P (Z ri(t)a:,) dt
(b) L(zy,... ,zpm) = Z_mlm_' Z 61-...‘emP<Zeimi>
Tei=%1 i=1

(see [73, Theorem 1.10] and [10, p. 21]).
Endowed with the norm

[EaCall
[l

the space P(™X,Y) is a Banach spa(.:e.

1P| = sup = sup {[|P(2)] : [l=]| < 1},

PROPOSITION 1.1. For every L € L,(™X,Y), we have
~ m™ .
120 <2l < IR
This was proved by Martin [69], using the polarization formulae. Thus,
Ls;(™X,Y) and P("X,Y) are isomorphic Banach spaces. The constant m™ /m!

is best possible, as shown by the following example due to Nachbin [74, §3,
Remark 1].
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EXAMPLE. Let £ = ¢;. If z = (z,) € ¢, consider the continuous, m-
homogeneous polynomial L(z) = P(z) = ; - €3 - ... - &m. If (¢;) is the unit
vector basis of 41, then L(ey,... ,e,) =1/ml. So, ||L|| > 1/m!. On the other
hand, |L(z)| < 1/m™, for ||z = %2, |z;| < 1. Ifz = (1/m, ™), 1/m,0,0,...),
then L(z) = 1/m™. Thus

~ 1 mm .
L|| = — d Ll = —||L|.
£ =~ and so 2 = |

In this case, we say that L is an eztremal continuous symmetric, m-linear
form on ¢;. It is interesting to point out that if there exists an extremal
L e £,(™X), then ¢ is finitely representable in X [84]. Recall that Y is said
to be finitely representable in X [53] (we shall write Y f.r. X)), if for every € > 0
and every finite dimensional subspace Yy of Y, there are a finite dimensional
subspace X, of X, and a surjective isomorphism 7T : Yy — X such that

I ITH < 1+e.
The following remarkable theorem is due to Pisier:

THEOREM 1.1. ([92, Theorem II1.C.16]) Let X be an infinite dimensional
Banach space. Then the following conditions are equivalent:

(a) X does not have type p, for any p > 1.

(b) For every ¢ > 0 and every m € N, there exist norm-one vectors
T1,...,Zm € X such that

min >m—e€.
€;=+1

m
2 e
i=1

(c) ¢, is finitely representable in X.

Recall that a Banach space X is of type p, 1 < p < 2 (respectively, of
cotype q, 2 < g < 00) if there exists a constant C > 0 such that for any finite
family z,,... ,z, € X:

n

n 1/p
< c (Z Ha:l”p> )

1
2n

€iT;
ei==%1 1

i=
respectively,

n
Do

i=1

n 1/q 1
(Zl ||$i”q) < 0’2'; Z

ei==%1
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It is easy to show that ¢; is finitely representable in the reflexive space

o)
n=1 2

of all sequences z = (z,,), with z,, € £ and 3" ||z,]|> < oo, endowed with the

norm ||z|| := (32 Hxn”%)l/ ?. Therefore, reflexivity is not preserved under finite
representability. As for uniform convexity, however, we get

PRrROPOSITION 1.2. ([12, 4.1 §1, Proposition 1]) If X is uniformly convex,
and Y fr. X, then Y is uniformly convex.

Recall that X is uniformly convez if §(e¢) > 0 for all ¢ > 0, where the
function

T +y

d(e) := inf{l -

|l =l =1, e =l > ]

is called the modulus of convezity of X.
A space X is superreflezive if

Y fr. X = Y is reflexive.

Hence, the above mentioned space (@neﬁ"’)z is reflexive, but not superreflex-

ive. Since every uniformly convex space is reflexive [64, Proposition 1.e.3],
Proposition 1.2 shows that every uniformly convex space is superreflexive.
Using geometric characterizations of superreflexivity, James proved that X is
superreflexive if and only if X* is superreflexive [52]. Since X* is uniformly
convex when X is uniformly smooth [64, Proposition 1.e.2], it follows that
every uniformly smooth space is superreflexive. Recall that a Banach space
X is uniformly smooth if

where
1
plr) = sup {5 (s +yll + l}o —yl) = 1 ol < 1, Iyl <
is called modulus of smoothnes of X.

The following result of James’ has been very useful in the theory of poly-
nomials:
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THEOREM 1.2. ([53]) Let X be superreflexive. Then, for every C > 1 and
K > 1, there is a number p € (1,00) such that, for every normalized basic
sequence (z,), with basis constant K, and for every finite sequence (a;) of

scalars, we have
1/p
S C <Z |(1,i[p> .

i

D aii
i

In particular, if (e;) is the unit vector basis of £,, there is an operator T : £, —
X, so that Te; = x;.

We pointed out that uniformly convex and uniformly smooth spaces are
superreflexive. It was proved by Enflo [32] that the converse is also true, in the
sense that every superreflexive space can be given an equivalent norm which is
uniformly convex, and also an equivalent, uniformly smooth norm. This result
was refined by Pisier, who gave an estimate for the moduli of convexity and
smoothness:

THEOREM 1.3. ([78]) Let X be superreflexive. Then:

(a) There are p > 2, C > 0 and an equivalent norm on X whose modulus
of convexity d(e) satisfies 6(€) > Ce® for all e > 0 (we say that X is p-convex).

(b) There are q € (1,2), C' > 0 and an equivalent norm on X whose
modulus of smoothness p(7) satisfies p(1) < C'7? (we say that X is g-smooth).

We shall be interested in the subspace P;("X,Y) of P(™X,Y’) generated
by the collection of functions

¢m®y=¢m.y (mEN, ¢EX*,yEY),

where (¢" @ y)(z) := ¢"(z) - y, for each z € X. Let

PAX,Y) = 3 Py, Y)

m=0

be the space of all continuous polynomials of finite type from X into Y. The
completion of P;(™X,Y) with respect to the norm induced by P("X,Y) is
denoted by P.(™X,Y), and is in general strictly contained in P(™X,Y’). Let
K be a compact Hausdorff space, and C(K) the space of all scalar valued,
continuous functions on K. If K is dispersed (every closed subset of K contains
an isolated point), and X = C(K) with the supremum norm, then for every
m €N, P(™X) = P.("X) [3, p. 215].
The following Banach-Steinhaus type theorem holds:
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ProprosITION 1.3. ([70]) Let X, Y be Banach spaces, and let (P,) be a
sequence in P(™X,Y). If (P,) converges pointwise to a mapping P : X — Y,
then P € P("X,Y).

A polynomial is (weakly) compact if it takes the unit ball into a relatively
(weakly) compact subset.

2. NACHBIN’S THEOREM

In this section, X and Y will be real Banach spaces. Given m € NU{+o0},
we endow the space C™(X,Y) of m-times continuously Fréchet differentiable,
Y-valued functions on X with the compact-open topology of order m, i.e.,
the topology of uniform convergence of the functions and their derivatives of
order < m on the compact subsets of X. We denote this topology by 7.".
Recall that, for j < m, the jth derivative of f € C™(X,Y) is a mapping
d’f : X - P(’X,Y). We denote df := d'f.

In the theory of polynomial approximation of differentiable functions there
are essentially two basic results for finite dimensional spaces: Weierstrass’ and
Nachbin’s theorems. The first assures that the space P(R") is 7/*-dense in
C™(R™). In 1948, Nachbin went to the University of Chicago for a two year
visit, at the invitation of Stone. While there, he had the opportunity, in 1949,
to present at André Weil’s Seminar a recent article by Whitney [91].

Pressed by Segal’s question in 1949, Nachbin studied the noteworthy case
of dense subalgebras, to obtain:

THEOREM 2.1. ([75]) Let X be a real, Hausdorff C*°-manifold of finite
dimension n, and G C C™(X), with m € NU {4+oo}. Then the algebra
generated by G is 7/"-dense in C™(X) if and only if the following conditions
hold:

(a) G separates points.

(b) G does not vanish at any point.

(c) For every x € X and v € T,(X), the tangent space at z, v # 0, there
exists g € G such that dg(z)(v) # 0.

In 1975, trying to extend Nachbin’s theorem to infinite dimensional spaces,
Lesmes [60] and Llavona [66] found the following counterexample which shows
that the space P;(X), a basic example of subalgebra satisfying the conditions
of Theorem 2.1, is not dense in C™(X), when m > 2 and X is an infinite
dimensional Hilbert space.
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COUNTEREXAMPLE. Let X be a real infinite dimensional Hilbert space.
The space P;(X) is not 72-dense in C?(X). The point is that if f: X - R
is defined by f(z) = ||z||?, then d?f(z) = 2Id, where Id is the identity map
on X. Since for each P € Ps(X), d*P(z) € L(X,H), where H is a finite
dimensional subspace of X, it follows that df(z) ¢ P.(*X). Therefore, in
order to get polynomial approximation for the 7/*-topology, it seems logical to
consider functions f € C™(X,Y) so that d’ f(z) € P,(*X,Y), for every z € X
and j < m.

For different extensions of Theorem 2.1 to infinite dimensional spaces, we
refer the reader to Llavona’s book [67].

With the study of the space P.("X,Y), a particular, important class of
polynomials is introduced in this theory, the polynomials whose restrictions
to bounded subsets are weakly (respectively, weakly uniformly) continuous.
We concentrate our attention on this class of polynomials in the next section.

3. WEAKLY CONTINUOUS POLYNOMIALS

If A C X, a function f : A = Y is said to be weakly continuous if for
each x € A and € > 0, there are ¢;,...,¢, € X* and § > 0 such that
lf(z) — f(y)ll < € whenever |¢;(z —y)| <dforyec Aandi=1,...,n. We
denote by P,;(™X,Y) the space of all m-homogeneous polynomials from X
into Y whose restrictions to bounded subsets of X are weakly continuous. A
function f : A — Y is said to be weakly uniformly continuous if for each € > 0
there are ¢y,... ,¢, € X* and § > 0 such that ||f(z) — f(y)|| < €, whenever
|ps(z —y)| < 6 for z,y € Aand i =1,... ,n. We denote by Pyp,("X,Y) the
space of m-homogeneous polynomials whose restrictions to bounded subsets
of X are weakly uniformly continuous.

THEOREM 3.1. ([11, Proposition 2.7]) If X* has the approximation prop-
erty, then Py, ("X,Y) = P.(™X,Y) for all m.

An introduction to the approximation property may be seen in [63, 1.€].

It is easy to show that if a (non necessarily linear) mapping f: X = Y is
weakly uniformly continuous on bounded subsets of X, then f takes bounded
sets into relatively compact sets [11, Lemma 2.2]. Valdivia [89] showed that
a Banach space X is reflexive if and only if every weakly continuous, scalar
valued function on X is bounded on bounded sets. Therefore, X is reflexive
if and only if each mapping from X into any Banach space which is weakly
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continuous on bounded sets is in fact weakly uniformly continuous on bounded
sets. However, as for polynomials, we have the following remarkable theorem:

THEOREM 3.2. ([9, Theorem 2.9]) Let P € P(™X,Y) and let the associ-
ated linear mapping Tp : X — L, (™ 'X,Y) be given. Then P € P;("X,Y)
if and only if T is compact. Consequently, Py, (™X,Y) = Pup(™X,Y).

We denote by P, ("X,Y) the space of those P € P(™X,Y) which are
weakly sequentially continuous (w.s.c., for short), i.e., such that for every se-
quence (z,) C X weakly converging to z, the sequence (P(z,)) converges to
P(z) in norm. It is clear that

wau(mXa Y) = wa(mXa Y) - Pwsc(mxa Y) .

EXAMPLE. Let P(z) := Y oo, z2, acting either on ¢; or on ¢,. Then P ¢
Pusc(24), since the unit vector basis (e;) in £, is weakly null, but P(e,) = 1
for all n. On the other side, P € P,,.(*¢;), since weak and norm convergence

of sequences coincide in ;. However, P ¢ P, (*41).

The following result gives a full description of the relationship between
Pup(™X,Y) and Py,(™X,Y). The equivalence (a)<(b) was proved in [38],
and the other statements in [48].

THEOREM 3.3. The following assertions are equivalent:

(a) X contains no copy of ¢;.

(b) For every Y, we have Puy("™X,Y) = Puse(™X,Y) for allm € N.

(c) For someY and some m € N, we have Py ("X,Y) = Py ("X, Y).
(d) For some m € N, we have Puy("X) = Pyse(™X).

Examples of spaces such that P(™X) = P,,("X) for all m are:

(a) The original Tsirelson space T* [1, 88].

(b) The quasi-reflexive Tsirelson-James space T'; [7, 68] (recall that a space
is quasi-reflezive if it has finite codimension in its bidual).

(c) In general, every space with property (S,) for all p > 1 (see definition
below), not containing ¢; [45], such as Leung’s space [61].

Recall that a sequence (z,) C X is called seminormalized if there are
constants K,k > 0 such that k < ||z,|| < K forall n. If 1 < p,q < oo,
we say that a sequence (z,) has an upper p-estimate (respectively, a lower
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g-estimate) if there is a constant C' > 0 such that for every n € N and every
G1,...,0, € K we have

n n l/P
S oz, so(Zlam) ,
i=1

i=1

respectively,

n n 1/q

Zaimi Z C <Z ]a,-]q> .

=1 i=1

where, if p = oo (resp. ¢ = 00), the right hand side has to be replaced by
sup, |a;|. In particular, a normalized, basic sequence has an upper co-estimate
if and only if it is equivalent to the unit vector basis of ¢,.

We now introduce other related sequential properties, which will be used in
the next section. Following [58], we say that X has property (S,) (1 < p < c0)
if every weakly null seminormalized, basic sequence in X has a subsequence
with an upper p-estimate. Similarly, X has property (T,) (1 < g < 00) if every
weakly null seminormalized, basic sequence has a subsequence with a lower
g-estimate.

A Banach space X has the Schur property (we shall say that X is Schur,
for short) if every weakly null sequence in X is norm null. The space ¢; is
Schur. Since a Schur space has properties (S,) and (T,) for all 1 < p < oo and
1 < g < o0, we say that X has property (T}) if and only if X is Schur. Every
Banach space has properties (S1) and (Tw).

A sequence (z,) C X is said to be weakly p-summable if for every ¢ € X*,
we have that (¢(z,)) € £, (or (¢(z,)) € ¢ if p = 00). It is worth noting that
a sequence has an upper p-estimate if and only if it is weakly g-summable,
where p7! + 471 = 1.

The sequence (z,) C X is weakly p-convergent if there is z € X such that
(xn—2)52, is weakly p-summable. Following [21], we say that X is in the class
W, if every bounded sequence in X has a weakly p-convergent subsequence.
Clearly,

W, C W, C .- C W, = {Reflexive spaces} .

Using James’ Theorem 1.2 and the Bessaga-Pelczynski selection principle
[14], we obtain (see [21]):

X superreflexive => X € W, for some p > 1.
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4. POLYNOMIALS AND /,-ESTIMATES OF SEQUENCES

One of the earliest results connecting polynomials (or multilinear map-
pings) with properties of weak convergence of sequences is due to Littlewood
[65], who showed that every bounded, bilinear form on ¢, is approximable by
bilinear forms of finite type, that is, finite linear combinations of products of
functionals on ¢q. This result was extended by Pitt [79], who proved that
every bounded, bilinear form on ¢, x ¢, is approximable by bilinear forms of
finite type, whenever p~! + ¢=! < 1. Taking into account that bilinear forms
on X X Y correspond precisely to linear operators from X into Y*, we obtain
that every linear operator from ¢y into £; is compact, and so is every linear
operator from ¢, into £,, for p > q. Of course, we also obtain that every
2-homogeneous, scalar valued polynomial on ¢ (resp., on £, p > 2) is weakly
sequentially continuous. These results were extended by Pelczynski [76] who
proved that every scalar valued polynomial on ¢y is weakly sequentially con-
tinuous (see also [17]), and every N-homogeneous polynomial from £, into ¢,
is compact whenever p > Ng.

Our aim in this section is to provide conditions on X and Y so that every
polynomial of a given degree from X into Y be compact. This will be achieved
by studying the action of polynomials and multilinear mappings on sequences
with either upper or lower £,-estimates. By Theorem 3.3, if X contains no copy
of 7, then every w.s.c. polynomial from X into Y is compact, for every Y. On
the other hand, if X does contain a copy of 4; and Y is infinite dimensional,
then there exists a non-compact N-homogeneous polynomial from X into Y,
for each N > 2 [44, I1.2]. Therefore, we shall mainly be concerned with weak
sequential continuity of polynomials.

A sequence (z,) C X is said to be p-Banach-Saks (1 < p < 00) if there is
C > 0 such that for all n € N, we have

n
D 2

k=1

< Cn'l?.

We say that (z,) is hereditarily p-Banach-Saks if there is C' > 0 such that
any subsequence of (z,) is p-Banach-Saks with constant C. A formal series
Yoo,z in X is weakly unconditionally Cauchy (w.u.C., for short) if for every
¢ € X*, we have that 72, |¢(z;)| < co. We start with a permanence result.

THEOREM 4.1. Let P be an N-homogeneous polynomial from X into Y,
(z;) C X a sequence, and p > N. Then:
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(a) ([10]) If (z;) is hereditarily p-Banach-Saks, then (P(z;)) is hereditarily
p/N-Banach-Saks.

(b) ([45]) If (z;) has an upper p-estimate, then (P(z;)) has an upper p/N-
estimate.

(c) ([42]) If the series 3 z; is w.u.C., then Y- P(z;) is w.u.C. as well (this
is the case p = 00).

A basic tool in the proof of this theorem is the sequence of generalized
Rademacher functions, introduced in [8], and defined as follows:

Fix 2 <k eN, and let a; = 1,as,...,a; denote the kth roots of unity.

Let s; : [0,1] — C be the step function taking the value o; on the interval
((j—1)/k,j/k) for j =1,... k.

Then, assuming that s,_; has been defined, define s, as follows. Fix any
of the k"' subintervals I of [0,1] used in the definition of s,_;. Divide I into

k equal intervals Iy, ... , It, and set s,(t) := ; if t € 1.
These functions are orthogonal [8, Lemma 1.2] in the sense that, for any
choice of integers 41,... ,ix; k > 2, we have
1 . . .
)L it ==
/0 si () s (1) dt = { 0 otterise

As an example, we shall give the proof of Theorem 4.1(c), which needs the
following previous lemma:

LeEMMA 4.1. ([42]) Let X, Y be complex Banach spaces. Given a polyno-
mial P € P(*X;Y), we have that, for every z,,...,z, € X,

Proof. Observe that both suprema are attained for some |¢;| = |v;| =1

j=1,...,n).
For any z1,...,z, € X and any complex numbers ¢; with |¢;| = 1, we can

find ¥ € Y™, ||9|| = 1, such that
=1 (Z e]-Pa:j) .
j=1

i EjP.’L'j

=1

< sup
lvil<1

sup
le;|<1

n
Z EjP.’Ej
=1
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Then, choosing complex numbers §; such that 5;? = €;, we obtain

n
Z EjP.’Bj
=1

= 9 (i P(djmj))

JiseeesJr=1

1 n )
= /0( Z sjl(t)-...-sjk(t)z/)oP(éjla:jl,...,6jkmjk)) dt

1 n n
= /0 YoP (Z 85,85 (D)Tj0y 05 Y 5jk3jk(t)$jk) dt

Jji=1 Je=1

0 i1

J

P (Xn: erl;j)

and the proof is finished. |

IA

sup

lvjl=1

b

We remark that if the spaces under consideration are real, then the right
hand side of the inequality has to be multiplied by (2k)*/k!. The proof, using
complexifications of the spaces, is standard.

Now, to prove Theorem 4.1(c), it is enough to recall [14, Lemma 2] that a
series Y z; is w.u.C. if and only if

sup sup < 00.

nlei|<1

E €T
i=1

Theorem 4.1 has a natural counterpart for multilinear mappings:

THEOREM 4.2. Given Banach spaces Xi,... ,Xn,Y, let T : X; X --- X
Xy — Y be a continuous, N-linear mapping. Choose p,...,py € (1,4+00]

such that
1 1
—+- 4+ — <1,
D1 PN

i)
g=—+ "+ — .
D1 DN

) C X;, for 1 <i < N. Then:

and let

L\ O
Consider sequences (m;) _
J:
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(a) [2] If for each i = 1,...,N, the sequence (m;>°o1 is hereditarily p;-
]:

Banach-Saks, then the sequence (T (ml

P
Saks. -
(b) If foreachi = 1,... , N, the sequence (xj.)jzl has an upper p;-estimate,

yzy ) ) oo is hereditarily g-Banach-

Jj=1

o0
then the sequence (T (le, e ,:vjy )) . has an upper g-estimate.
i= )
(c) Suppose for each i = 1,...,N, the series }_;z} is w.u.C. Then the
series ;T (:v;, ,wj\’) is wu.C. (case p, = -+ = py = 00).

As a consequence of Theorem 4.1 or 4.2, we obtain the following result of
Aron-Globevnik and Zalduendo:

COROLLARY 4.1. ([8, 93]) Suppose X = £, (1 < p < 00) or X = ¢, let
(e;) be the usual basis of X, and P € P(VX). Then:

(a) If X =4, and N < p, then (P(e;)) € £p/n)«-

(b) If X = cq, then (P(e;)) € 41.

Next we define the lower and upper indices for a Banach space X, in
connection with properties (S,) and (T;) introduced at the end of section 3.
These indices are the following:

[(X): = sup{p>1:X has property S,} € [1,+00]
u(X): = inf{g < +oco: X has property Ty} € [1,400].

EXAMPLES. [44, 45].

(1) If X is not a Schur space, then {(X) < u(X).

(2) If 1 < p < oo, then I(¢,) = p = u(b,); U(Ly[0,1]) = min{2,p};
u(Ly|0,1]) = max{2,p}.

(3) 1(£y) = +o0; u(4y) = 1.

(4) (L0, 1)) = 1; u(Ly[0, 1)) = 2

(5) {(co) = +00 = u(cy), and the supremum and infimum are attained.

(6) For the original Tsirelson space T*, we have [(T*) = 400 = u(T*), and
the supremum and infimum are not attained.

(7) For the dual space T of T*, I[(T) = 1 = u(T).

(8) The James space J [51] and its dual J* satisfy I(J) = u(J) = 2 =
W(J*) = u(J*).

(9) If M is an Orlicz function satisfying the A,-condition at 0 [63, Def-
inition 4.a.3], then for the Orlicz sequence space £, we have [(£y) = aum
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and u(fy) = B, where ayy and By are the lower and upper Boyd indices
associated to M, respectively (see [57]).
(10) For 1 <p < 2,

X is p-smooth == X has (5,) = {(X) >p
X hastypep = X has (S,)for 1 <r<p = I(X) >p.

For 2 < g < o0,

X is g-convex => X has (T,) = u(X) <g¢q
X has cotype ¢ = X has (T,) forr >q = u(X) <gq.

By using these indices, we obtain the following Theorem, which is essen-
tially a reformulation of some of the results in [76].

THEOREM 4.3. ([45]) Let X and Y be Banach spaces. Then the following
conditions hold:

(a) If Nu(Y) < I(X), then every N-homogeneous polynomial from (any
subspace of) X into Y is w.s.c.

(b) If X has property (S.,) and Y contains no copy of ¢y, then every
polynomial from (any subspace of) X into Y is w.s.c.

As above, this Theorem has a natural extension to multilinear mappings
(see also [2] for closely related results). Given an N-linear mapping T : X; X
<+ x Xy = Y, we say that T is weakly sequentially continuous (w.s.c.) if,

.\ O© .
whenever the sequence (m;) . C X; is weakly convergent to z*, for 1 <i < N,
]:

we have that T (:v}, . wN) converges to T'(z',... ,z") in norm, as j — co.

1 T
THEOREM 4.4. ([27]) Let X,,... ,Xn,Y be Banach spaces. Then the fol-
lowing conditions hold:
(a) If
IE TR SR
1(X1) I(Xn) ~u(Y)’
then every continuous, N-linear mapping from X; x --- x Xy into Y is w.s.c.
(b) If X,,...,Xn have property S, and Y contains no copy of ¢, then
every continuous, N-linear mapping from X; x --- X Xy into Y is w.s.c.

Specializing into £,-spaces, we have the following extension of Pitt’s clas-
sical theorem.
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THEOREM 4.5. ([2, 27, 39]) For pi,... ,pn,q € (1,+00), the following con-
ditions are equivalent:

(a)
1 1 1
—_ + .o + —< -
D1 PN q
(b) Every continuous, N-linear mapping from £, X --- x £, into ¢, is
compact.

(c) Every continuous, N-linear mapping from £, X ---x £, into £, is w.s.c.
(d) The space L (£y,,... ,Lpy;£,) of continuous, N-linear mappings from
£y, x -+ x{,, into ¢, is reflexive.

As a consequence of Theorem 4.3 we have that, if N < [(X), then ev-
ery scalar valued, N-homogeneous polynomial on X is w.s.c. (see also [19,
Lemma 1] where an analogous result is given). Nevertheless, in the case of
scalar valued polynomials, something better can be said. The following result
is obtained in [44, 46], refining previous work by Farmer [36].

THEOREM 4.6. Suppose that no normalized, weakly null sequence in X
has a lower g-estimate. Then, for N < q, every scalar valued N-homogeneous
polynomial on X is w.s.c.

The proof of this Theorem makes use in a strong way of the theory of
spreading models (see [13] for an extensive treatment). In the proof, the
following result is used, which may be of independent interest.

THEOREM 4.7. ([46]) Let (y,) C X be a weakly null sequence which ad-
mits a spreading model E with unconditional basis (e,,), and let P € P(VX).
Then there exists a polynomial P € P(VE) and a subsequence (z,) of (y,)
such that, for all scalars ay,... ,ay:

k k
(a) P <]Z=:1 ajej) = dm P (Z aﬂm)

Jj=1
k k
(b) P Zajej =P Zajenj if n <---<ng.
j=1 j=1

Another result on weak sequential continuity of polynomials will be given
at the end of the next section on the Dunford-Pettis property.
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5. THE POLYNOMIAL DUNFORD-PETTIS PROPERTY

In 1940, in a now classical Transactions paper [31], M. Dunford and B.
Pettis noticed that for a finite measure p and a separable Banach space X,
if T: L'(u) — X is a weakly compact, linear operator, then 7' is completely
continuous, ife., T' takes weakly compact subsets of L'(x) into norm com-
pact subsets of X. In the early 1950’s Grothendieck canonized those Banach
spaces which share with L'(u) the property that weakly compact operators
are completely continuous.

DEFINITION 5.1. ([47]) A Banach space X is said to have the Dunford-
Pettis property (DPP, for short) if for each Banach space Y, every weakly
compact, linear operator X — Y is completely continuous.

For basic facts about the DPP, the reader is referred to [26], where the
following well-known result may be seen:

THEOREM b5.1. The following assertions are equivalent:

(a) X has the DPP.

(b) For any space Y, every weakly compact operator from X intoY takes
weakly convergent sequences into norm convergent sequences.

(c) For any space Y, every weakly compact operator from X into Y takes
weak Cauchy sequences into norm convergent sequences.

(d) For any pair of weakly null sequences (z,) C X and (¢,) C X*, we
have that lim,_, o ¢,(z,) = 0.

Easily, the DPP is inherited by complemented subspaces. Considering the
identity map, we see that no infinite dimensional, reflexive Banach space can
have the DPP. Clearly, every space with the Schur property has the DPP.

Since every weakly null sequence in X is weakly null in X**, we see that X
has the DPP whenever X* has it. The converse is not true. There is essentially
one counterexample due to Stegall [85], which we present briefly. Let

X = (@ eg’”)
n=1

be the space of all sequences z = (z,), with z, € £” and ¥ ||z.[2 < oo,
endowed with the norm ||z|| := 3 ||z,|l2. Then X has the Schur property.
However, it is not difficult to see that its dual

X*= (é eg’”)

n=1

1
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contains a complemented copy of 4,, and cannot therefore have the DPP.

The problem of finding additional conditions on X so that if X has the
DPP then X* has it too has been open for a long time. However, it is easy to
prove that

THEOREM 5.2. ([35, 77]) A space X has the DPP and contains no copy of
¢, if and only if X* has the Schur property (and, therefore, the DPP as well).

All C(K) and L;(u) spaces have the DPP [47].
In 1979, Ryan showed that the DPP is equivalent to the polynomial Dun-
ford-Pettis property (PDPP):

THEOREM 5.3. ([82]) Suppose X has the DPP, and let Y be any Banach
space. If P : X —'Y is a weakly compact polynomial, then (P(z,)) is norm
convergent in' Y whenever (z,) C X is weak Cauchy.

In particular, if X has the DPP, then P("X) = Pys(™X) for all m. By
Theorem 3.3, we get:

CORCLLARY 5.1. If X has the DPP and contains no copy of ¢;, then
Pup(™X) = P(™X) for all m.

The PDPP was the original motivation to introduce the weak polynomial
topology in [20]. We say that a net (z,) C X converges to z in the weak
polynomial topology (wp-topology, for short) if for every P € P(X) we have
that P(z,) — P(z). Recall that X is said to be a A-space [20] if a sequence
(z,) € X is norm null whenever it satisfies P(z,) — 0 for all P € P(X).
Trivially, every space with the Schur property is a A-space.

Using the fact that every superreflexive space is in W), for some p > 1, it
is proved in [54] that every superreflexive space is a A-space.

The spaces ¢y, L1[0,1], Ls[0, 1], £s are not A-spaces. In fact, a space with
the DPP not satisfying the Schur property is not a A-space, since it is easy to
prove that

PROPOSITION 5.1. ([20]) A Banach space has the Schur property if and
only if it has the DPP and is a A-space.

By means of techniques similar to those used by Ryan in his proof of
Theorem 5.3, the following result may be obtained:
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THEOREM 5.4. ([41]) Suppose X has the DPP, and every operator X —Y
is weakly compact. Then for every k € N, each continuous, k-linear mapping
from X* intoY is w.s.c.

COROLLARY 5.2. ([41]) Suppose X has the DPP, and every operator X —
Y is weakly compact. Then, every polynomial from X into Y is w.s.c.

In particular, every polynomial from /., into a space containing no copy
of £y, is w.s.c. However, not every such polynomial is weakly compact [42,
Remark 16].

6. OTHER POLYNOMIAL PROPERTIES

In the last few years there has been an increasing interest on Banach space
properties defined in terms of polynomials, and also on properties of spaces of
polynomials. In this section, we concentrate on some of them. We start with
polynomially Schur and polynomially Dunford-Pettis spaces, first studied by
Farmer and Johnson in [37]. For a Banach space X, let P<N(X) denote the
space of all scalar valued polynomials on X of degree less than or equal to N.
A sequence (z,) C X is said to be PN-null (resp. P<N-null, resp. P-null) if
P(z,) — 0 for every P € P(VX) (resp. P<V(X), resp. P(X)).

We say that X is P<N-Schur if every P<"-null sequence in X is norm null.
Obviously, each such space is a A-space, and P<'-Schur property is nothing
but Schur property. As typical examples, we have that £, is P<"-Schur for
N >p (1 <p < o0). On the other hand,

(&),

is a A-space, but it is not P<N-Schur for any N. Now consider F = P(VX),
or P<N(X), or P(X). We say that X has the F-Dunford-Pettis property
(F-DPP, for short) if it satisfies the equivalent conditions of the following
theorem:

THEOREM 6.1. ([15, 82]) Let F = P("X), or PSN(X), or P(X). The
following conditions are equivalent:

(a) For every Y, each weakly compact operator X — Y takes F-null se-
quences in X into norm null sequences in Y.

(a’) For every Y, each weakly compact polynomial X — Y takes F-null
sequences in X into norm convergent sequences inY .
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(b) For every weakly null sequence (¢,) C X* and every F-null sequence
(zn) C X, we have ¢, (x,) — 0.

(b’) For each m € N, for every weakly null sequence (P,) C P(™X), and
every F-null sequence (z,) C X, we have P,(z,) — 0.

If F = PN or PSN,| these conditions are also equivalent to:

(b”) For every weakly null sequence (P,) C P(VX) and every F-null se-
quence (z,) C X, we have P,(z,) — 0.

It is plain that both P*-DPP and P<!-DPP coincide with the classical
Dunford-Pettis property. In the case N = 1, the theorem is just Ryan’s
Theorem 5.3, and the general case is given in [15] (see also [37]). From the
definition, we have that

DPP = PN.DPP = P<N.DPP = P<N+L.DPP = P-DPP.

On the other hand, every P<V-Schur space (resp. A-space) has P<N-DPP
(resp. P-DPP). Further connections between these properties are given in the
following two corollaries:

COROLLARY 6.1. ([20, 37]) A Banach space is P<N-Schur if and only if it
has P<N-DPP and is a A-space.

COROLLARY 6.2. ([15])

(a) Suppose that X is reflexive. Then X has P<Y-DPP (resp. P-DPP) if
and only if X is P<N-Schur (resp. a A-space).

(b) Suppose that P(X) = Pyse(X). Then X has P-DPP if and only if X
has PSN-DPP, if and only if X has DPP.

The spaces £, ® ¢y and £, ® £y, where 1 < p < oo, have PSV-DPP for
N > p, but are not P<M_Schur, for any M. More examples of spaces with
P<N_Schur property, P<N-DPP, and P-DPP are provided by the following
results.

THEOREM 6.2. ([37])

(a) Suppose that X* contains no copy of ¢1, and X* has property (Sp-),
where (1/p) + (1/p*) = 1. Then X is P<N-Schur for N > p.

(b) Suppose that X* has type p* > 1, where (1/p) + (1/p*) = 1. Then X
is P<N_Schur for N > p.

THEOREM 6.3. ([15]) Suppose that X is P<N-Schur (resp. a A-space), and
let K be any compact Hausdorff space. Then C(K,X) has P<N-DPP (resp.
P-DPP).
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Talagrand has given examples of spaces C(K, X) without the DPP [86].
Using Example 3.7 in [21], we can find a compact space K and a sequence (Xy)
of spaces without the DPP such that each C(K, Xy) fails the P<N-DPP.

Next we give some stability properties of spaces with P<N-DPP and P-
DPP.

THEOREM 6.4. ([15]) Let (X,,) be a sequence of Banach spaces with P-
 DPP (resp. P<V-DPP). Then the spaces (@, X»), and (@, X,), for1 <p <
oo (resp. 1 < p < N) have also P-DPP (resp. P<N-DPP).

When either P(X) = P,,.(X) or X is a A-space, then it is clear that the
sum of two P-null sequences in X is P-null. However, for some spaces not
satisfying these conditions, such as ¢y @ £,, we still know that the same is true,
thanks to the following result:

THEOREM 6.5. ([15]) Suppose that X has the P-DPP, and let (z,,), (y,) C
X be P-null sequences. Then (z,, + y,) is P-null.

As a different kind of polynomial property, we now turn our attention to
the reflexivity of spaces of polynomials. We start with a fundamental result
due to Ryan.

THEOREM 6.6. ([81]) Suppose X has the approximation property, and let
N be fixed. Then the following conditions are equivalent:

(a) P(VX) is reflexive.

(b) X is reflexive and every P € P(MX) is weakly sequentially continuous.

(c) Each bounded sequence in X has a P<"-convergent subsequence.

We do not know if the approximation property is necessary in the above
Theorem.

If P(NX) is reflexive for every N, then we say, according to Farmer [36],
that X is polynomially reflexive. As noted in the comment after Theorem 3.3,
T* is polynomially reflexive. Other examples are provided by the following
result due to Farmer:

THEOREM 6.7. ([36, 44]) Suppose that X is reflexive and no normalized
weakly null sequence in X has a lower g-estimate, for ¢ > 1. Then X is
polynomially reflexive.
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We now consider Q-reflexivity, a concept closely related to polynomial
reflexivity, introduced by Aron and Dineen [7]. For the definition, we follow
[55].

Given z € X**, we define an operator

71 Ly(VX) — Lo(V1X)

by
Z2(L)(z1,... yzn-1) :=(z,L(z1,... ;ZNn_1, ")) -

If we now have N vectors zy,...,zy € X**, we consider the operators
L,(NX) 2 £,(VX) 25 £,(X) =K

)
and, given L € L,("X), we define

L(z,...,2ny) =% 0---0Zy5(L).
In this way, we obtain a continuous, N-linear functional L on X** which
extends L. Although the extended functional need not be symmetric, given
P € P(VX), there is no ambiguity in defining its Aron-Berner extension P
to X** by P(z) := L(z,... ,2) where L is the symmetric, N-linear functional
associated to P. The Aron-Berner extensions were introduced in [4], in a
different way.

Thus we have a linear extension mapping from P(VX) into P(¥X**). In
fact, it has been proved in [23] that ||P|| = || P||, so we can consider P(VX) as
a subspace of P(¥X**). For each z € X** we have the evaluation functional
e. € P(MX)* given by e,(P) := P(2).

We now define the operator

ﬂN . P(NX)** — P(NX**)

by
Bn(T)(z) :=T(e,).

Then, By has norm one. According to [7], we say that X is Q-reflezive if By
is a surjective isomorphism for each N € N. Note that if P(VX) is reflexive,
then Oy is the identity mapping and so, every polynomially reflexive space is
Q-reflexive. It is shown in [7] that the non-reflexive Tsirelson*-James space
T5 is Q-reflexive. The symmetric, projective tensor product of T; with itself
is shown in [40] to be an example of Q-reflexive, non-quasi-reflexive space.

A criterion for Q-reflexivity is given by the following result:
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THEOREM 6.8. ([7, 55]) Suppose X** has the Radon-Nikodym property
and the approximation property. Then:

(a) BN Is surjective;

(b) Bn is injective if and only if P(NX) = Py (VX).

Combining this with the results of section 4 yields:

COROLLARY 6.3. Suppose X** has the Radon-Nikodym property and the
approximation property. Then:

(a) If no normalized weakly null sequence in X admits a lower g-estimate,
then By is a surjective isomorphism for all N < q.

(b) If X* has property (S,-) with (1/p) + (1/p*) = 1, then By is not
injective for N > p.

We know of no example of a space such that Gy fails to be surjective. It
is shown in [55] that if X** has the bounded approximation property (see [63,
Definition 1.e.11]), then Gy is surjective for all N € N.

In connection with Q-reflexivity, conditions for spaces of polynomials to
have the Radon-Nikodym property are given in [7] and [90]. For further infor-
mation about the bidual of spaces of polynomials, we refer to [55] and [90].

Properties such as containment or finite representability of ¢, in spaces of
polynomials are investigated in [29] and [30]. We finish this section with two
polynomial properties introduced by Gonzilez and Gutiérrez in [42] and [43].
Recall that a series Y o, z; is unconditionally convergent (u.c., for short) if
every subseries is norm convergent. A polynomial P € P(*X;Y) (k € N) is
unconditionally converging if P maps w.u.C. series into u.c. series. We say that
X is a Grothendieck space if every weak-star null sequence in X* is weakly null.
Similarly, X is said to be P~ -Grothendieck if every pointwise null sequence
in P(MX) is weakly null. On the other hand, X has Pelczyniski’s property (V')
if, for every Y, each unconditionally converging operator X — Y is weakly
compact. Finally, X is said to be PV-(V) if, for every Y, each N-homogeneous,
unconditionally converging polynomial X — Y is weakly compact. The main
result concerning these properties is the following:

THEOREM 6.9. ([42, 43]) For a Banach space X and fixed N > 2, the
following statements are equivalent:

(a) X is PN-Grothendieck.

(b) X is PN-(V).

(c) P(NX) is reflexive.
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For a different approach to some of the polynomial properties studied in
this section, we refer to [18].

7. PrROPERTIES (P) AND (RP)

In relation with the PDPP and A-spaces, Aron, Choi and Llavona [5] in-
troduced properties (P) and (RP) for polynomials. The motivation was the
following:

If g : B,, = B, is defined by g((z,)) = (z}), then g is not uniformly

continuous, since
1
glen) =g |(1-3) ]
n

However, using Pelczyniski’s result cited in the introduction to section 4, Pog
is uniformly continuous for every continuous polynomial P on ¢y. Suppose
g : Bx — By is a function that satisfies property (*) below:

—1—et!>0.

(*) For any polynomial P € P(Y), the composition Pog : By - K
is uniformly continuous.

Is g necessarily uniformly continuous?
This problem will be solved if we are able to determine when the following
condition is satisfied:

(**) Given two bounded sequences (u,),(v,) C Y, if P(u,) —
P(v,) — 0 for every P € P(Y), then it follows that u,, — v, — 0.

We introduce the following condition which, as we shall see, is strictly weaker
than (**). We say that Y has property (P) if whenever two bounded sequences
(uj), (vj) C Y satisfy |P(u;) — P(v;)] = 0 for every P € P(Y), then it follows
that Q(u; —v;) — 0 for every @ € P(Y).

In addition, the study of property (P) naturally leads to the following
reciprocal property, which is also studied in this section. We say that Y
has property (RP) if whenever two bounded sequences (u;), (v;) C Y satisfy
P(u; —v;) — 0 for every P € P(Y), then it follows that Q(u;) — Q(v;) — 0
for every Q € P(Y).

We begin with the following easy facts about property (P):

PROPOSITION 7.1. ([5])

(a) Every Banach space with the DPP has property (P).

(b) Let g : Bx — By be a function that satisfies property (*). IfY is a
A-space with property (P), then g is uniformly continuous.
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If every scalar valued polynomial on X is weakly sequentially continuous
at the origin, then X has property (P). Thus, for instance, the space T* has
property (P). Although the spaces L'[0,1], ¢y and £, satisfy property (P),
they do not satisfy condition (**).

An interesting result on property (P) is the following:

THEOREM 7.1. ([15]) Suppose X* has property (S,) for some 1 < p < co
- and X* contains no copy of ;. Then X has property (P).

Since every superreflexive space is in W, for some 1 < p < oo, it satisfies
the conditions of the Theorem, and so every superreflexive space has property
(P). In particular, every LP(u) space has property (P), for 1 < p < oo.

Choi and Kim [22, Theorem 2.1] have shown that every space with non-
trivial type has property (P). No example is known of a Banach space failing
property (P). Moreover, although it is obvious that every Banach space with
property (**) described above is a A-space, we do not know if the reverse
implication holds. However, every A-space with property (P) satisfies (**).

In relation to property (RP), it is elementary to show that every A-space,
and ¢o have property (RP). In fact, we have:

THEOREM 7.2. ([5])

(a) Every A-space has property (RP).

(b) co has property (RP).

(c) If X has DPP and contains no copy of £, then X has property (RP).

(d) The spaces £oo(~ Lu[0,1]), Li[0,1] and C[0,1] do not have property
(RP).

We sketch the proof that the space L. [0,1] fails to have property (RP).
Let I := (1/27,1/27") (j = 1,2,...), and let (r;(t));2, be the Rademacher
functions on [0, 1]. Define

A Ly[0,1] X Lo[0,1] X Lo[0,1] — K
by

A(f9.1) Z(2’/f dt)<g,n><hn>

where (g,7;) = fO (t)r;(t) dt. It is easy to see that A is a continuous, trilinear
form. For each j, let s; = xy;,, ; = r; and y; = r; + s;. Since (s;) is
weakly null in L[0,1], the DPP of L0, 1] implies that P(z; —y;) — 0 for
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every continuous, scalar valued polynomial P. Let @ be the 3-homogeneous
polynomial given by Q(f) = A(f, f, f), for f € L,[0,1]. Since

0 ifl<j<n-—1
/ rn=4{ =277 ifj=n
L 277 ifj>n
we see that Q(r,) = —1 for all n. Similarly, Q(y,) = 0, and so |Q(z,) —
Q(yn)| = 1, which completes the proof.

It is worth noting that Q(z;)—Q(y;) — 0 for every 2-homogeneous polyno-
mial Q on L[0,1]. In fact, suppose that (z;) and (y;) are bounded sequences
in £, such that (z;—y;) is weakly null. Let Q € P(*{,) and let A be the unique
continuous symmetric, bilinear form associated to @, so that Q(z) = A(z, z).
We can regard A as the bounded operator A : z € £, — A(z, -) € £,. Since
£*_ contains no copy of co, it follows that A : £,, — €% is weakly compact [80].
By the DPP of £, we get that A(z; —y;) — 0 in £5,. Then it follows that
Qlz;) - Qly;) — 0.

8. POLYNOMIAL CONTINUITY

A mapping f : X — Y issaid to be polynomially continuous (P-continuous,
for short) if its restriction to any bounded set is uniformly continuous for the
weak polynomial topology, i.e., if for every ¢ > 0 and bounded B C X, there
are a finite set {Py,... ,P,} C P(X) and 6 > 0 so that ||f(z) — f(v)|| < €
whenever z,y € B satisfy |P;(z —y)| < d (1 <j < n). Clearly, if every scalar
valued polynomial on X is P-continuous, then X enjoys property (RP). In
the proof of Theorem 7.2(d) given in [5], polynomials on L. [0, 1], L'[0, 1] and
C10,1] are constructed which are not P-continuous. For certain spaces, such
as ¢y, every P-continuous mapping is weakly uniformly continuous on bounded
sets, but this is not true in general. For example, ||z||? is clearly P-continuous
on the real space £,, although it is not weakly uniformly continuous on the
ball. On the other hand, every P-continuous mapping is uniformly continuous
on bounded sets. It is easy to see that the norm is not P-continuous on cg,
and that, for some Banach spaces, such as #,, uniform continuity on bounded
sets and P-continuity coincide.

A characterization of the spaces for which uniform continuity and P-
continuity coincide is given in the following theorem:

THEOREM 8.1. ([49]) For a real Banach space X, the following assertions
are equivalent:
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(a) The wp and the norm topologies coincide on X.

(b) X has a separating polynomial.

(c) Every uniformly continuous, real valued function on X is P-continuous.
(d) The norm is P-continuous on X.

Recall that a polynomial P € P(X) is separating if P(0) =0 and P(z) > 1
for every z € X with ||z|| = 1. Satisfy the above theorem the spaces LP(u)
with p an even integer, and the products of these spaces. Before studying
the P-continuity, we shall give a few results on the existence of separating
polynomials.

This separation property was first used by Kurzweil [59] in order to obtain
the following approximation result:

THEOREM 8.2. ([59]) Suppose that X is a separable, real Banach space
which admits a separating polynomial. Then every continuous real valued

function on X can be approximated, uniformly on X, by real analytic functions
on X.

We do not know whether the same result is true for nonseparable spaces.

Geometrical conditions for the existence of a separating polynomial are
given in [33] and [25]. If a real Banach space X admits a separating polynomial,
then X is superreflexive (see [25, Theorem 2] and [34, Theorem 3.3]). Deville
[24] proved that if X admits a separating polynomial then X contains an
isomorphic copy of ¢, for some n € N. This was made more precise in [46],
in connection with the upper and lower indices of the space:

THEOREM 8.3. ([24, 46]) Suppose that X is a real Banach space which
admits a separating polynomial. Then u(X) = 2m and I(X) = 2n, for some
n,m € N, and X contains an isomorphic copy of both ¢,, and {,,,.

In fact, when the space X has a subsymmetric basis (i.e., a basis which is
equivalent to any of its subsequences), something stronger can be said:

THEOREM 8.4. ([46]) Suppose that X is a real Banach space with a sub-
symmetric basis, which admits a separating polynomial. Then X is isomorphic
to £y, for some n € N.

We now study some properties of P-continuous operators. Since an oper-
ator is compact if and only if it is weakly (uniformly) continuous on bounded
sets [11, Proposition 2.5], every compact operator is P-continuous.
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It can be proved that every P-continuous operator is weakly compact. The
proof needs a description of the polynomials on ¢;, using the notation of [83].
We write IV ,§N> for the set of multi-indices of degree k, i.e., the set of sequences
m = (m;)$2,, with m; € N, and 332, m; = k. We let m! = [[}2; m;!, where
the usual convention 0! = 1 is observed. If a = (a;) is a sequence of scalars,
then a™ :=[];2, a;”, where 0° is defined to be 1.

LEMMA 8.1. ([49]) Every P € P(*,) may be written in the form P(t) =
Yomen® ant", for t € £y, with scalar coefficients a,, satisfying the estimate
k
mm

|Qm] T S Cill Pl

for some constant C‘k > 0 depending on. k. If ¢; is complex, we may take

Cy =1, and in the real case, Cy, = (2k)*/k!.

Using this Lemma and Ramsey’s theorem [56, Lemma 29.1], it is possible
to prove:

LEMMA 8.2. ([49]) Given P € P(*,) with k even, and € > 0, there are
n €N andt € 4y, ||t|]| = 1, so that |P(t)| < € and

1

t:gv_(epl+"'+ep1v_ePN+1_"'—eP2N)

where p; < -+ < pan.

We now sketch the proof of the next theorem.
THEOREM 8.5. ([49]) Every P-continuous operator is weakly compact.

Proof. Let T : X — Y be a P-continuous operator, and assume it is not
weakly compact. We can find operators U : ¢, —» X, § : {; = £, and
VY = Ly with S((¢,)) = (Xiei ts),,, so that VTU = § [62, Theorem 8.1].
Then S is P-continuous.

There is a wp-null net in the unit sphere of ¢;, with elements of the form

1
(1) t:Ej—v—(ep1+"'+epzv_ePN+1_"'_ep2N)'
Indeed, given a finite set of homogeneous polynomials {P,...,P,} C

P(¢,), if ¢, is constructed over the real field, we set P := P/ + .- + P%»
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so that P is a homogeneous polynomial of even degree. By Lemma 8.2, given
e > 0, there is t € Sy, of the form (1) so that |P(¢)| < e.

Since ||S(¢)|| = 1/2, S is not wp-continuous on the unit ball, a contradic-
tion.

If 4, is complex, we then need an easy adaptation of Lemma 8.2 for a finite
set of polynomials that may be assumed of even degree. 1

However, not every P-continuous polynomial is weakly compact; an exam-
ple is the polynomial P € P(*,,£,), given by P((t,)) = (¢¥), .

As we mentioned in the introduction to this section, if every scalar val-
ued polynomial on X is P-continuous, then X has property (RP). We can
ask whether the converse is true. We show that the answer is no, by giving
examples of polynomials on both ¢; and ¢3 which are not P-continuous.

It is easy to show that a polynomial P is P-continuous if and only if so is
the associated operator Tp. Let P € P(%4,) be given by

P(t) = Z{tjtk :jeven, 1 <k <j}

for t = (t;) € £,. Since the associated operator Tr is not weakly compact [6,
p. 83], this is an example of a polynomial on ¢; which is not P-continuous.
In the case of /3, it is easy to show that the 3-homogeneous polynomial
given by P(z) := >0, z3, for z = (z;) € 43, is not P-continuous.
Since P(*43) = Pus(*43) (see the Introduction to section 4), from Theo-
rem 3.2, we get that every 2-homogeneous polynomial on Z; is P-continuous.
By Theorem 8.1, we know that the wp-topology and the norm topology
coincide on a real Hilbert space. From this, we have

THEOREM 8.6. ([49]) Every scalar valued 2-homogeneous polynomial on
a real C(K) space is P-continuous.
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