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INTRODUCTION

In continuum thermodynamics the usual form of the Second Law (SL) is
local in time and position and runs as follows: The entropy production density
is not negative at each position for all times. This statement is not unique,
because after having inserted the constitutive equations into the balance equa-
tions we can differently interpret as follows:

i) All solutions of the balance equations have to satisfy the SL, or

ii) There are solutions of the balance equations which satisfy the SL, and oth-
ers which do not.

The consequences of these two interpretations of the SL are totally different.
Statement i) means that the constitutive equations have to be restricted in
such a way that all mathematical solutions of the balance equations must sat-
isfy the SL. Consequently i) means restriction of material properties by the SL.
Statement ii) means that there are solutions of the balance equations which
do not exist in nature because they do not satisfy the SL. Consequently ii)
means restriction of processes by the SL.

Obviously only one of the statements i) and ii) can be true, but which
of them? This question can not be decided by the formulation of the SL
given above, because the terms “process” and “constitutive equation” are not
included in this formulation. Thus we need some more knowledge for deciding
what is the true statement, i) or ii). This ”some more” is an amendment to
the SL, because it has to contain more than in SL is stated.

In the following it is derived that the (nearly self-evident, but never for-
mulated) amendment

There are no reversible process directions in non-equilibrium
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allows to prove statement i). As a consequence the entropy production den-
sity is a function of state. The connection between this amendment and the
stronger CM-formulation of the second law is discussed. Additional constraints
for the constitutive equations, called Liu equations and residual dissipation in-
equality, are consequences of the amendment.

1. BALANCES AND CONSTITUTIVE EQUATIONS

The M basic fields of continuum thermodynamics u4(x, t) satisfy balance
equations [8], [3]

Oyup + 0;® =1y, A=1,2,..., M. (1)

Here the &7, (z, t) and the 74 (z, ) are the fluxes and the supply and production
terms belonging to the u4(z,t). This system of partial differential equations
of first order for the basic fields can only be solved, if the fluxes and the
supply and production terms are known by constitutive equations [8]. But
these constitutive equations are only indirectly given as fields, because the
fluxes and the supply and production terms depend on other fields z(x,t),
called the state of the system.

As a simple example we consider the field of the heat flux density q(z, )
which depends on the temperature gradient 9;T'(x,t), so that we have

q(z,1) = QBT (z,1), ... (2)

Here 0;T(x,t) belongs to the state of the system.

Consequently, by dependence of the constitutive equations on other fields
than the basic ones u4(x,t), we have to introduce the state space [4] which
in general can be chosen almost freely. Here we restrict ourselves to a bw-
dimensional state space consisting of w fields z,(x, t) and their first derivatives

z = (Za, 0j2a, O12a) (x, 1), a=1,2,..., w. (3)
Thus we have to know the constitutive equations

(I)il = .7:1]4(2(:3, t))a (4)
ra = Ra(z(z,t)), (5)

usg =Ua(z(z,1)). (6)
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According to these constitutive equations the partial derivatives J; in (1)
have to be performed by use of the chain rule

J
0,09, = 8; 4.0z (7)

Inserting the constitutive equations (4) - (6) into (1) we obtain

J
OUs 8,2 _0F,

e 92 -0z + Ra(z). (8)

Using (3) we obtain from (8) differential equations for the z,(x,t) which we
call the balances on state space

OU 4 811,4 Uy
7. 024 aat aatat o 33kzaatakza +
| P 07 OF;
a Aa] Za aatA 8 8t Zo aakA 8 akza RA(Zﬂ,ang,atZﬂ). (9)

After having introduced the constitutive equations into the balance equa-
tions (1) we obtain the balances on the state space (9) which have to be
solved by posing suitable constraints and initial conditions. Especially the ini-
tial conditions depend on the choice of the state space (3). Some possibilities
of choosing the state space are discussed in the next section.

2. DIFFERENT TYPES OF STATE SPACES
The easiest case is, if the basic fields themselves span the state space !
z = (ua(z,1)). (10)

The balances on the state space (9) become in this case

OF%
at'U/A + —

ou g 8 juB = RA(Uc) (11)

Other choices of state spaces are

z = (ua,05ua)(x,t), (12)

This is the state space of Extended Thermodynamics, because in this case g(z,t) belongs
to the basic fields.
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z = (uAaajuAv at'U/A)(:L', t)’ (13)

z = (ug, 23, 0jup, 0,25, 0s25) (x, t). (14)
Especially the balances on the state space (13) which we consider here are

OF o oF?,
o —Adup 4+ 4 P —4-8;0,up + Fa —A 9,0up = Ra(uc, duc, uc).
up

0 +
et 90yup D0y up (15)

Up to now the second law was not taken into account which is formulated
in the next section.

3. DISSIPATION INEQUALITY

In continuum thermodynamics the second law is represented by the dissi-
pation inequality [9]

0 (ps) + 9;(vps + W) =0 > 0. (16)

Here the specific entropy s and the entropy flux density U7 are constitutive
quantities

s = S(z(z, 1)), Ui = P(z(z,t)). (17)

Inserting these constitutive equations into (16) we obtain the dissipation in-
equality on the state space

ops ops dps
aZa atza aat aatat a4 aak aatakza
I(vips + W) I(vips + ) (v ps + ) _
+ aza ajza + aatza (9]&20, + aakza ajakza = 0. (18)

The problem now is to solve the balances on the state space (9) taking
into account the dissipation inequality (18). By posing initial conditions and
constraints a solution of (9) may satisfy (18) everywhere or may not. If it
does not satisfy (18) for all (x,t) this solution of (9) does not exist in nature
because the second law is violated. Now it is very cumbersome to solve (9),
and after having got a solution to prove, that this solution satisfies the second
law (18) for all (x,t). Therefore we need a necessary and sufficient condition
to recognize, whether a solution of (9) does satisfy (18) or does not. This
condition is easy to obtain, as we will demonstrate later.
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4. THE HIGHER DERIVATIVES

The balances and the dissipation inequality on the state space have a spe-
cial shape which is now discussed. After having inserted the constitutive equa-
tions and performed the differentiations d; and d; in the balance equations (1)
and in the dissipation inequality (16) 10w so-called higher derivatives

y= (atatzaaatakzaaajakza)(mat) (19)

appear in (9) and (18). Because the coefficients in (9) and (18), and (17) do
not depend on the higher derivatives according to (4) - (6), these relations are
linear in the higher derivatives. Thus the balances on the state space (9) and
(18) can be written briefly as [5]

A(z)-y=C(2), B(z)-y=D(z) (20)

Here the coefficients A(z(x,t)) and B(z(x,t)) are given by the derivatives
of the constitutive equations

MUy, U, OF, OF,

00,2, 00kzq 00,20 O0kzs’
Ops  Ops  O(Wips+ VI) d(vips+ UI)
00,2, 00,2y’ 00,2z, O0kza

The other coefficients C(z(x,t)) and D(z(z,t)) include all other terms which
are not multiplied by higher derivatives.

We now consider (global) initial conditions suitable to the balances (9) on
the state space. Because (9) is a system of differential equations of second
order in time the initial conditions are

zo(@, 1) = Ay(), Oizo(x, tg) = Eq(). (21)
From these initial conditions follows immediately by differentiation to J;

0iza(m,t0) = O0;As (), 0;0kzq (T, tg) = 0;0r A (), (22)

0;0iza(x,t9) = 0;24(T). (23)

The balance equations (9) determine the w second time derivatives
0:0,zq(, 1o), if the matrix U, /00,2, is regular. Consequently not all the
higher derivatives are determined by the balance equations (20), -here a system
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of linear algebraic equations- because 9w of the 10w higher derivatives are given
by the initial conditions z(x,ty). Thus the kernel of A(z) is non-trivial, and
we have k linearly independent y* satisfying (20),

Alz)-y* =C(z), k=1,2,.., dimker < 10w. (24)
We now consider (local) initial conditions at an arbitrary, but fixed event
(2o, to)
za(To,t0) = oy Giza(To,t0) = &as (25)
and
0;2a(To,t0) = Wjor  0jO0kZa(To, to) = Vjka, 0j0i2a(®o,to) = Kja. (26)

The 14w real numbers (,,...,k;, can be chosen freely. According to (21) to
(23) these chosen numbers correspond to a a special global initial condition

Aa(mo) = Caa E’a(mO) = £a7 (27)

ajAa(wO) = Uja, ajakAa(-’Bo) = Vjka, aan(mO) = Kja- (28)

Changing the values of these 14w real numbers independently of each other,
i.e. changing the local initial conditions, means that also the global initial
conditions have to be changed according to (27) and (28).

Now we can formulate the necessary and sufficient condition mentioned
above at the end of section 3: Instead of solving the balances (9) on the
state space globally and inserting them into the dissipation inequality (18)
for testing the sign, we can can solve the algebraic problem (24) for arbitrary
(xo, to) and insert its (not unique) solution into

B(=z)-y* > D(z) (20)

for testing the sign. Consequently the algebraic (local) version (20) of the bal-
ance equations and of the dissipation inequality is a suitable tool for exploiting
the dissipation inequality which we will discuss in the next section.

5. EXPLOITATION OF THE DISSIPATION INEQUALITY

As we mentioned in the introduction, the question arises, if each solution
of the balance equations satisfies the dissipation inequality. The usual formu-
lation of the second law (16) does not make any statement about that. This
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fact can be formulated by two statements excluding each other:
i) All (local) solutions of the balance equations have to satisfy the SL

Vi{y* | A-y* =C} — {B-y* > D}, (30)

or
ii) There are (local) solutions of the balance equations which satisfy the SL,
and others which do not

Ify" | A-y*=C} — {B-y* > D} A (31)

ANL{y"|A-y"=C} — {B-y" < D}. (32)

To decide what statement is the correct one, we will formulate an amend-
ment of the second law in the next section. For that purpose the following
proposition is needed which is not proved here:

PROPOSITION 1. ([5]) If there are (local) solutions y' and y™ of different
signs of entropy production density (case ii))

B-y>Dand B-y™ < D, (33)
then (local) solutions

J J

exist. Because of the equality in (34), the higher derivatives Y represent a
reversible direction in state space.

6. NON-REVERSIBLE DIRECTION AXIOM

If a state z(x,t) has higher derivatives y’ of different signs of entropy pro-
duction density, also a higher derivative Y of vanishing entropy production
exists according to proposition I which is called reversible direction. Because
this lemma is valid for each state a reversible process can be generated start-
ing out with an arbitrary non-equilibrium state. Thus we obtain the strange
fact that a reversible process is passing through each state, independently of
being an equilibrium one or a non-equilibrium one. But by experience non-
equilibrium states can only be passed by irreversible process directions (higher
derivatives belonging to positive entropy production density). Consequently
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no reversible process direction exists in non-equilibrium states. Thus we for-
mulate [6], [7] the

NON-REVERSIBLE-DIRECTION AXIOM: FEzcept in equilibrium reversible pro-
cess directions in state space do not exist.

This axiom excludes (32) for non-equilibrium states because otherwise re-
versible process direction could be constructed according to proposition I
(34). Consequently reversible process directions appear only in connection
with equilibrium states (not exactly defined here), and only (30) is valid.
Thus the dissipation inequality is a constraint not for excluding processes, but
a constraint for the constitutive equations: The constitutive equations, i.e.
the A(z), B(z), C(z), and D(z), cannot be independent of each other, but
must have the property that the entropy production density is not negative
for all solutions of the balance equations. This is the CM-formulation of the
second law [1] which presupposes the validity of (30) and which therefore do
not need the non-reversible direction axiom.

7. CONSEQUENCES OF THE AMENDMENT

Presupposing the amendment the following propositions can be proved:

PROPOSITION 2. ([5]) The entropy production density is a function of
state and does not depend on the higher derivatives

0< B(z) -y—D(z) =:0(2). (35)

PROPOSITION 3. ([2]) There exist functions of state A(z) so that the Liu
equations

A-A=B (36)
and the residual dissipation inequality
A-C>D (37)
are valid.
PROPOSITION 4. If A is of maximal rank

A-A- =1, | » - (38)
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the second law and its amendment yield constraints for the constitutive equa-
tions

B-A--C > D. (39)

These constraints for the constitutive equations have to be taken into ac-

count in (20) before solving the balance equations (9).

REFERENCES

COLEMAN, B.D., MizEL, V.J. Existence of caloric equations of state in ther-
modynamics, J. Chem. Phys., 40 (1964), 1116-1125.

Liu, 1.S., Method of Lagrange multipliers for exploitation of the entropy prin-
ciple, Arch. Rat. Mech. Anal., 46 (1972), 131-148.

MuscHIK, W., Fundamentals of nonequilibrium thermodynamics, in Non-
Equilibrium Thermodynamics with Applications to Solids, W. Muschik, ed.,
Springer, Wien, 1993, 1-63.

MuscHIK, W., “Aspects of Non-Equilibrium Thermodynamics”, World Scien-
tific, Singapore, 1990, Sect. 1.2.

MuscHIK, W., “Aspects of Non-Equilibrium Thermodynamics”, World Scien-
tific, Singapore, 1990, Sect. 6.4.1.

MuscHIK, W., Derivation of Gibbs fundamental equations by dissipation in-
equalities (algebraic approach), in Proceedings of the International Confer-

ence on Nonlinear Mechanics Shanghai, Chien Wei-zang, editor, Science Press,
1985, 155-162.

MuscHIK, W., Alternative exploitation of dissipation inequality demonstrated
for hyperbolic heat conduction, in Disequilibrium and Self-Organisation, C.
W. Kilmister, ed., Reidel, 1986, 65— 74.

TRUESDELL, C., NoOLL, W., “Encyclopedia of Physics”, volume I1I/3, Section
C, Chap.C3. Springer, Berlin, Heidelberg, New York, 1965.

TRUESDELL, C., NorLL, W., “Encyclopedia of Physics”, volume III/3,
Chap.79. Springer, Berlin, Heidelberg, New York, 1965.



