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Given a second order differential equation on a manifold we find necessary
and sufficient conditions for the existence of a coordinate system in which the
system is linear. The main tool to be used is a linear connection defined by
the system of differential equations.

1. INTRODUCTION

We will consider the following problem: Given a system of second order
differential equations

it = fi(a',... 2" 3. 5", i=1,...,n,

we look for necessary and sufficient conditions for the existence of a coordinate
transformation ‘

=1 __ ¢if,.1 n s

=&z, ... ,z"), i=1,...,n,

such that, in the new coordinates Z*, the system has one of the following forms:

e Linear in velocities

e Linear in all coordinates
=4 i~J i —j i .
z:A;:EJ—i—B;:LJ—i—C’, i=1,...,n,

for some contants A}, B} and C*.
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As a guiding example we can consider the wellknown case of the equation
for geodesics on a manifold: Given the differential equation

&+ iy (2)i8* = 0,

can we find a local coordinate system (Z‘) such that in the new coordinates
the differential equation has the trivial form

#=0.

The answer to this problem is also wellknown [5]. If we consider the connection
D whose Christoffell symbols are the functions I'y;, then the answer to the
problem is YEs if and only if the connection D is locally flat, i. e. if the
curvature tensor R}, vanishes.

In this way we reduce the problem of the existence of some special coordi-
nate system to the problem of the integrability of a connection. In the general
case we will follow a similar idea.

2. THE NON-LINEAR CONNECTION

In geometric terms, a system of second order differential equations (here-
after shortened to SODE) on a manifold M is interpreted as a vector field I’
on the tangent bundle to M, such that T7(I'(v)) = v for every v € TM,
where 7: TM — M is the tangent bundle projection. The local coordinate
expression of such vector field is

=2t awi —Ff"(:ls,v)i

3] ovt’
and the actual differential equation is the equation for the integral curves of
I:
dr* dvt
at " @~ @)

Every SODE defines an Ehresman connection on the tangent bundle (see
(3, 1]), that is, a decomposition

T(TM) = Hor(r) & Ver(r)
In local coordinates, the vertical distribution is generated by the vector fields

0
Vi—%a
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and the horizontal one by the vector fields

0

oz?

H iy
t Qv

where the coeficients of the connection are defined by

. 1 af
B="3 v

In more intrinsec terms, the Lie derivative with respect to I' of the vertical
endommorphism S satisfies [£p5]2 = I, so that it has eigenvalues 1 and —1.
The eigenspace corresponding to the eigenvalue 1 is the vertical subbundle,
and thus the eigenspace corresponding to the eigenvalue —1 defines a comple-
mentary distribution, i.e., a horizontal distribution. The projectors onto these
subbundles are

1
PH = %(I - ,CFS) and PV = §(I+£FS)

Since the coefficientes of the connection are (minus one half of) the deriva-
tives of the forces with respect to the velocities, we can think that the inte-
grability of the non-linear connection implies that the forces are independent
of the velocities in some coordinates. This is NOT the case. The integrability
of the horizontal distribution implies the existence of coordinates (y*,2*) on
T'M such that the horizontal distribution is spanned by 9/9y® while the ver-
tical one is spanned by 9/9z*. Nevertheless, these coordinates are not natural
coordinates in the tangent bundle (i.e., 7' # 2%), and the system of differential
equations is expressed in these coordinates as a system of 2n first order dif-
ferential equations. Therefore, it has no sense to speak about forces in such
systems of coordinates.

3. THE PuLL-BACK BUNDLE

As we saw in the last section, the integrability of the non-linear connection
does not solve our problem. This should be expected, since the problem of lin-
earisability is a linear problem and the integrability of a non-linear connection
is a non-linear condition. In the next section we will define a linear connec-
tion associated to the SODE, which can be thought as the linearisation of the
non-linear connection. In the present section we will consider the differential
geometric structures that we will need there.
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Consider the tangent bundle 7: TM — M and the pull-back bundle (see
[5]) *1: T*TM — TM, where

T*TM = { (wy,w;) €ETM x TM | 7(w;) = 7(wy) }

and 7*7 is the projection onto the the first factor. The linear connection will
be defined on this bundle.

A section o of this bundle is said to be a vector field along 7. Alternatively
a vector field along 7 can be considered as a map X: TM — TM such that
X (v) is a tangent vector a 7(v). We have the following commutative diagram:

7[r]

™TM T™
T'T|| o X T
T™ . M

where 7[7] is the projection onto the second factor. The C°°(T'M)-module of
vector fields along 7 will be denoted X (7). The local expression af a vector
field along 7 is

X = Xi(x,v)%.

We will say that a vector field X along 7 is basic if it is induced by a vector
field on M, i.e., the coefficients X* do not deppends on the coordinates v*.

The projection T'7: T(T'M) — TM induces a map 7,: X(TM) — X(1).
In local coordinates

za ia _ ia
T#(Xaxz-i-Y%) X

- or
Similarly the vertical lift ¢&V: TM — TTM induces amap ¥: X(7) —» X(TM),
which in coordinates is given by

; 0 V_ ; 0
(X'gm) =X

The sequence

0 — X(1) — X(TM) 2 X (1) — 0
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is exact. A non-linear connection can be seen as a splitting of this sequence,
that is, a map “: X(7) — X(T'M), called the horizontal lift, such that
T,(X") = X for all X € X(7). In coordinates

9 \" _
iZ ) =XiH,.
(X 6$1>

The connection also defines a map k: X(T'M) — X(7), called the connec-
tion map, given by k = £V~ o Py. In local coordinates

; 0 ; 0
K(X 8xi+Y3v"

)V=(Yi+r;xf)5%.

The connection map is characterized by x(X*) = 0 and «(X") = X, for all
vector field X along 7.

4. THE LINEAR CONNECTION

We remind that a linear connection on a bundle 7: £ — N is a linear map
that associates to every vector field U on N a derivation Dy of the module of
sections of the bundle. Thus, D satisfies

Du(O' + )\) = DUO' + .DU)\
DU(fO') = U(f)a+fDUa
DU+VO' = DUO' + thf

for o and A section of E, f a function on N, and U, V vector fields on N.
We will consider the case E = 7*TM, N = TM and m = 7*7. The
sections of this bundle are the vector fields along 7, so that a linear connection
associates a derivation Dy of X(7) to every vector field U on T M.
The linear connection defined by a SODE I is given by

DUX = K,[PHU,XV] + T#[PvU,XH] .
In local coordinates, if we define the functions I'}, on TM by
o _ Lo
vk 2 Ovi gk’
then the linear connection is determined by

o ., 0 0
ERE T D3 o

i
ij—
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Thus, if X and Y are vector fields along 7 we have

DxsY = XlHiYJ FJYk—
X [ ( )+ ik ](91'7,
. 9Y?
ovt

Two properties that will be use in the next section are:

DxvY = X

e A vector field Y along 7 is basic if and only if DyY = 0 for every vertical
vector field V on TM.

e If X and Y are basic vector fields, then
DxnY — DynX = [X,Y],
where [X,Y] denotes the Lie braket as vector fields on M.

Further properties of the linear connection can be found in [4].

5. LINEARISATION OF SODES

Since the coefficients of the linear connection are the second derivatives of
the forces with respect to the velocities, the vanishing of these coefficients in
some coordinates imply that the forces are linear in velocities.

THEOREM 1. A second order diferential equation is linearisable in veloci-
ties if and only if the linear connection is flat.

Proof. The ‘only if’ part is trivial. For the ‘if’ part, assume that the linear
connection is flat. Then there exists a local base {X;} of parallel vector fields
along 7. It follows that Dy X; = 0 for every vertical vector field V on T M, so
that X; are basic vector fields. Moreover they pairwise commute:

[Xi,Xj] = DX'HXJ _DX{IXj == 0

Therefore, by Frobenius theorem, there exists a coordinate system (z*) such
that X; = 8/0z'. In these coordinates, the coefficients of the linear connec-
tion vanish, and hence 82 f¢/0vigv* = 0. It follows that the forces are affine
functions in velocities. 1
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Another geometric object associated to the SODE is the Jacobi endomor-
fism. It is the linear endomorfism ® of X'(7) defined by

o(X) =k[[, X"].
In local coordinates the components of ® are

% 8-]” i %
@) = — = —TiT} —I(T)).

In terms of the Jacobi endomorphism, we can charaterize the linear SODES as
follows.

THEOREM 2. A second order differential equation is linearisable if and
only if the linear connection is flat and the Jacobi endomorphism is parallel.

Proof. If the linear connection is flat, we can consider ‘affine’ coordinates
(z*), in which the forces are linear in velocities:

fi=aj(z)v’ + ().

The expression of the Jacobi endormorphism is then

i opt 1, . 1 8a§ doi \
®—‘55"1%%+§(aﬁ‘23y v

Since @ is parallel iff its components in affine coordinates are constant, it
follows that the coefficients of v¥ vanish and the other terms are constant.
But the vanishing of g%ki — 9 92 implies a—aki =0, and thus a;'. are constant:

oz oz .
aj = Aj. On the other hand @} = — 80 — Lojok is constant iff 22 is
constant: % = Bj. It follows that the forces have the expression

fi=Alai 4 B+ O,

for some constants C".
The ‘only if’ part is a matter of straightforward calculation. 1

For time-dependent systems of second order differential equations see [2].
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