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In this paper we present a geometrical formulation for Lagrangian systems
subjected to non-holonomic constraints in terms of jet bundles. Cosymplectic
geometry and almost product structures are used to obtain the constrained
dynamics without using Lagrange multipliers method.

1. INTRODUCTION

The natural arena for studying time-dependent mechanical systems is a
fibered manifold 7 : E — R (see [14, 6, 8, 22] and references therein). In
fact, F is the configuration space, and the evolution space is J' 7, the manifold
of 1-jet of local sections of w. The Lagrangian is a function L : J'm — R. As
we have shown in [12, 4, 8], the use of almost cosymplectic geometry instead
of symplectic geometry permits us to derive in a very geometrical setting the
motion equations.

Non-holonomic constrained systems have a long subject of research since
the first times of Mechanics (see, for instance, [15] and [14] for a large bibliog-
raphy on this subject) and they have deserved great attention in recent years
(23, 24, 13, 17, 18, 14, 1, 2, 7, 5, 19, 3, 20, 21, 9, 10, 11].

In this paper, we suppose that the Lagrangian L is subjected to a set of
constraints {¢;} which are affine in the velocities, that is, ¢; = (u;)a(t,q)¢* +
hi(t,q). An almost product structure (P, Q) is defined on the manifold J*m
such that the projection P(£L) of the Euler-Lagrange vector field &, corre-
sponding to the free problem gives the dynamics of the constrained problem.
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128 M. DE LEON, D. MARTIN DE DIEGO

2. JET MANIFOLDS

Let E be an (n+ 1)-dimensional fibered manifold over R, i. e., there exists
a surjective submersion
m:E—R.

The 1-jet manifold J'7 is defined as the space of 1-jets of local sections of m,
i. e,
o[t | ¢:UCR— E,mop=idy
U open neighborhood of ¢ ’

If (¢,q*) are fibered coordinates on E, then J'7 has local coordinates (¢, g4, ¢*).
In fact, if ¢(s) = (s,“(s)),s € U, jl¢ is determined by
dop?

t, (1), —(t)) .

(6,61, 2" w)
So J'm is a (2n + 1)-dimensional manifold. We also deduce that J'm is a
fibered manifold over E and R, with canonical projections m o : J'mw — E
and m; : J'7 — R. In local coordinates we have

7r1,0(t7 qAa qA) = (t7 qA) )
7"'l(tquaq.A) = t,
©(t,q") = t.

Notice that we can choose fibered coordinates such that ¢ is the standard
coordinate on R.

There exists a canonical embedding of J'7 into TE. In fact, any 1-jet j; ¢
defines a tangent vector (,i)(t) € Ty E. In local coordinates we have

(t,q* ¢*) — (t,q*, 1,4%) .

Remark. If E is the trivial fibration 7 : R x Q@ — R, then J'mw may be
identified with R x T'Q.

There exists a canonical tensor field J of type (1,1) on J'7 defined as
follows. Let be X € Tj14(J'm) and take its projections to E and R:

Tmio(X) € TyyE, Tm(X)€TR.

Hence B .
Tio(X) = Top(t)Tm(X) € (VT)g(e)
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where Vrr is the vertical subbundle of n-vertical tangent vectors on E. Take
its vertical lift to TE and its restriction to J'm, since it is tangent to J'm.
Hence

JX = (Tmo(X) - ToWTm (X))

YBAL

In local coordinates we obtain

J(8) =i
H(5e) =
T(s2) =0
or, equivalently, 5
J = (dg* — ¢*dt) @ —
(dg” — ¢"dt) ® 9ir
In a similar way, we define the manifold of 2-jets of local sections J%m with

local coordinates (t,q4,¢*,G*). Notice that J*r is a fibered manifold over

Jim, E and R with canonical projections

Myy Jir — J'nm,
T20 - J27T — E,
my : JPm — R.

There exists a natural inclusion of J?7 into the 1-jet manifold J'm;. In
fact, define

v o JPres Jinm
g i,
where 1)(s) = jl¢. In local coordinates, v reads as

v(t,q*,d*, i) = (t, g%, ¢, ¢, ) .

Moreover, there exists a natural embedding of J'm; into T'J'w. So, we
have the following inclusions

Jir < Jr S TI .

We shall consider a special class of vector fields on J'w. We say that a
vector field £ on J'r is a non-autonomous second order differential equation
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(NSODE for simplicity) if € : J'mr — T'J'w takes values into (u o y)(J%m).
Therefore, £ is an NSODE iff it has the following local expression:

. d 0 0
&(t,q%, %) = 5 +q"6 A+§A

If we put n = (m;)*(dt), we obtain the following geometrical characterization
of an NSODE: ¢ is an NSODE iff J(¢) = 0 and 5(¢) = 1.

A local section ¢ of 7 : E — R may be considered as a curve in E. We
denote by j'¢ the 1-jet prolongation of ¢ to J'm which can also be viewed as
a curve in the manifold J'n. We say that ¢ is a solution of an NSODE ¢ if
its 1-jet prolongation j!¢ is an integral curve of £. Thus, ¢(t) = (t, $%(t)) is a
solution of £ iff it satisfies the following system of non-autonomous differential
equations of second order:

q A(t g, %) }

(Notice that any integral curve of £ is a 1-jet prolongation).

hQ-

3. NoN-HoLoNOMIC LAGRANGIAN DYNAMICS

A C* function L : J'w¥ — R is said to be a non-autonomous or time-
dependent Lagrangian. Associated with L we define the Poincaré-Cartan 1-
form

0, = Ln+ J*(dL)
and the Poincaré-Cartan 2-form
Qp =—-dOy .
In local coordinates we have

Op = (L—q*pa)dt+ padg*,
Qp = d(@*pa—L)Ndt+dg* Ndpy ,

where py = are the generalized momenta.

L
g4

We say that L is regular if the Hessian matrix

(a7a)
0¢40¢B
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is non-singular. So, L is regular iff (2, 7) is an almost cosymplectic structure
on J'z. In that case, there exists a unique vector field £; on J*7 such that

’igLQL = 0 5 igL’I] =1. (1)

&1 is the Reeb vector field of the almost cosymplectic structure (21,,7). More-
over:

1. &, is a NSODE.

2. The solutions of £, are just the solutions of the Euler-Lagrange equations
for L:

d (0L oL
— == —5=5=0, 1<A<n. 2
dt (an) 9" =asn 2)

Next, we shall suppose that the Lagrangian L is subjected to m indepen-
dent non-holonomic constraints {¢; ; 1 <4 < m}, m < n, given by

¢i = (”‘i)A(t’ q)qA + hi(tu q) .

The constraint functions ¢; may be intrinsically defined as follows. Take
m linearly independent 1-forms on E {y; ; 1 < i < m} and the complete lift
ps to TE. If pu; = (1) adg? + hidt, we get

¢ O(1i) a oh; -B O(1i)

¢ = 722 gt —dt =2 dgt
pi = T— o dg +7 n +4q 9qP dq
+ ¢® Oh; dt + (p;) adq™ + hidT
an 1 (3 9

where (t,q*,7,¢*) are the induced coordinates on TE. Define the 1-forms ji;
on Jlw by

B = J*(Mf/m) .
Hence we obtain
fi = (pi) adg® — ¢ (i) adt .
Moreover, define the function ; : TE — R by

ﬂ’z(X) = (.U'i(x)7X> ’ VX e TmE .

So, we have
ﬂ’i(tan77-7 qA) = (""i)AqA + hr .
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Thus, its restriction to J'x is just ¢;, say ¢i(t,q?,d4) = fi(t, ¢4, 1,44).

In order to obtain independent constraint functions we have to assume
that dt and {p;} are linearly independent. The motion is allowable on the
submanifold P; defined by the vanishing of the constraint functions ¢;. So,
the motion equations (1) have to be modified:

ixQp = N
ixn = 1 (3)
X(¢i) = 0

where \! are Lagrange multipliers to be computed. In fact, if X is a solution of
(3) we deduce that X is an NSODE and its solution satisfy the Euler-Lagrange
equations with constraints:

d (0L oL ,
- R P . ]_ < A < . 4
dt (an> an /\(ﬂz)A, —_ _'ﬂ ( )
Define the vector field Z; by
iz =i, izn=0. (5)

Then JZ, = 0 and Z; is a m0-vertical vector field. Define the matrix C of
order m whose entries are

Cij = Zl((].l)]) .
If C is regular we define a tensor field Q of type (1,1) by

where (C¥) is the inverse matrix of C. A direct computation shows that Q% =
Q. Thus (P = idyn, — Q,Q) is an almost product structure on J'w. In
principle, (P, Q) is only defined on the points of P;, but from regularity of C,
we conclude that (P, Q) is also defined on some open neighborhood of P;. It
is obvious that

ipe, 0, =0, ipgn=0.

Moreover, we have

Pr)(gr) = Eulde) — Cij§L(¢i)Zj(¢k)
= fL(¢k) - CijfL(QSi)Cjk
= £(de) — 0ibr(di)
= 0,
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which implies that P(£) is tangent to P;.
We conclude that P(£;) is the solution of the dynamics, the Lagrange
multipliers being
N =—C,(¢s), 1<j<m,

Notice that since L is regular, the unique solution of (3) is just P(£1).

4. THE SINGULAR CASE

Suppose now that the matrix C is singular (with constant rank) on P;.
From (3) and (5) we get X = &, + A ji;. So X(¢;) = 0 may be equivalently
written as

En(d;) + XN Zi(¢;) =0 (6)

Consider the set P, of all the points of P; where this system of equations have
solutions (\f) and suppose that P, is a submanifold of P;. Consistency of the
dynamics impose that the solutions verifying (6) of (3) must be tangent to Ps.
Nevertheless, these solutions on P, may not be tangent to P». Then, we have
to restrict P, to a submanifold where the solutions of (3) are tangent to P.
Proceeding further we obtain a sequence of constraint submanifolds

o> P> Py Py
We have three possibilities:

1. There exists an integer k£ > 1 such that P, = 0. This means that the
equations (3) are not consistent.

2. There exists an integer £ > 1 such that Py # 0 but dim P, = 0 In this
case, there is no dynamics. P, consists in isolated points and the solution
of the dynamics is X = 0.

3. There exists an integer & > 1 such that P,,, = P, and dim P, > 0. In
such a case, there exists at least a solution  on Py verifying the NSODE
condition (that is, (J€ = 0),p, and (i¢n = 1),p,) such that:

(10 = )\i,a,.)/Pk .

In the third case, the manifold P is called the final constraint submanifold
and it will be denoted by P;.
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Suppose that P; is given by the vanishing of constraints x; , (1 < ¢ <
m'), where m’ > m. Construct the matrix C' = (Z;(x;)), (1 <" < m'),
(1 < 3" < m') and suppose that it has contant rank, i.e., rank C' = k' < m
(k < K'). For simplicity, we suppose that the matrix C; = (Cj.;.) = (Zi (x;')),
(1 <4',3' <k'),is non-singular. As in the regular case, we construct an almost
product structure (P, Q) given by

Q=(C"Z; @dxy, (1<#,j <Kk <m),

and P = id — Q, where (C')7" is the i'j'-entry of the inverse matrix of C!. For
each solution X = &, + M2+ A*Z,, 1 <I <K,k +1 < a<m)of (3)
we obtain that P(X) is a solution of the motion equations on P;. In fact, we
have '

P(X) =& — (€)' (Eolxe) + N Zs(xs)) Zio + X*Za
with ¥’ +1 < 8 < m. We then conclude that
(tpx)QL = Mﬂi)/Pf

(ipxyn = 1)/P,
(P xe) = 0),,,

5. THE HAMILTONIAN FORMALISM

Let L : J'm — R be a regular Lagrangian function. In order to obtain
the Hamiltonian counterpart of the dynamics, we first define the Legendre
transformation associated with L.

Define

Leg:J'mn — T*E

as follows: Leg(j} ¢) is the 1-form at the point ¢(t) such that
(Leg(ji $), X) = ((Or)(7i #), X) ,

where X € Ty,)E and X is an arbitrary tangent vector at j; ¢ which projects
onto X, i.e., Tm o(X) = X. In local coordinates we obtain:

Leg(t,q*,q') = (t,q*, L — ¢*Pa,Pa) -

Now, put

(T°E), = {a € T'E [ iwa = 0,Yu € (V),} .
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Then, Ty E = U,eg(T, E), is a vector subbundle of 75 : T*E — E of rank
1. Denote the quotient vector bundle by J'7*, say
J'r* =T*E|T'E .
Jim* is a vector bundle over E of rank n and we have and exact sequence of
vector bundles over E
0—T'E - TE-S J'nr — 0 (7)

If we consider local coordinates (¢,q%,p;,pa) on T*E, then we have local
coordinates (¢,q*,p;) on T*E and (t,q”,p4) on J'm*. Notice that J'7* is a
vector bundle over F and a fibered manifold over R, with canonical projections:

Tio: St — E
and
nJJint — R,
respectively.
Denote by leg : J'm — J'n* the composition of leg with v, i.e.,
leg=voLeg.

Since L is regular, Leg is an inmersion and leg a local diffeomorphism. Assume,
for the sake of simplicity, that L is hyperregular, that is, leg : J'm —
J'm* is a global diffeomorphism. In such a case, we define a global section
h : J'm* — T*E of the canonical projection v : T*E — J'z* by putting

h = Legoleg™".

(If L is regular we only have local sections of v). h will be called a Hamiltonian.
Define the 2-form Q) = h*wg on J'7*, where wg is the canonical symplectic
form on T*E and n; = (n7)*(dt). A simple computation shows that:

1. (,m) is an almost cosymplectic structure on J'7*.

2. Denote by E}, the Reeb vector field for (24,m1), i. €., tg, Q2 =0, g, m =
1, and suppose that
h(t,q*,pa) = (t,4", H(t,q"*,pa),pa) -

Hence the projections onto E of the integral curves of E, satisfy the
Hamilton equations:

dg*  8H  dps OH

dt  Ops’ dt  0gA
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3. (2,n) and (Qp, 1) are leg-related, i.e., leg*Qy, = Qy, leg*n = 1.
4. As a consequence, &, and Ej, are also leg-related.

Now, suppose that L is subjected to non-holonomic constraints given by a
family of linearly independent 1-forms p; on E. We define the 1-forms fi; and
the functions ¢; on J'7* by

o= (leg™")" (@) ,
¢i = ¢ioleg™h.

Thus, the Hamilton equations for the constrained system are:

7;)‘{ Qh = Ai[bi
igm = 1 (8)
X(¢:)) =

where A are Lagrange multipliers to be determined.
The almost product structure (P, Q) on J'r is transported onto an almost
product structure (P, Q) on J'7* such that

0=C9Z0dh,

being C% the entries of the inverse matrix of C = (C¥ = Z;(¢;)) and Z; the
7 o-vertical vector fields given by

iZiQh - [,NIIZ
izm = 0

Of course, Z; and Z; are leg-related. As a conclusion, we obtain that 75(Eh)
is the solution of the motion equations (8) with Lagrange multipliers

N = —CYE, (),

because P(£1) and P(E;) are leg-related.

In a similar way, if we apply the algorithm developed in Section 4 to the
motion equations (8), we obtain a sequence of constraints submanifolds M;
of J'z*. These submanifolds M; are precisely M; = leg(P,). Thus, both
algorithms are connected by means of the Legendre transformation leg. If one
of them stabilizes, the other one too, and conversely.



NON-HOLONOMIC MECHANICAL SYSTEMS 137

6. AN EXAMPLE

Suppose that a point A moves on the axis Oz, the distance OA being a
prescribed function f(¢) of ¢. The particle of mass m, whose position at time
tis (z,y), moves in the zy-plane, and is constrained so that at each instant its
velocity is directed towards A. This curve is called curve of pursuit (see [16]).

Consider the trivial bundle 7 : R x R? — R, n(¢,z,y) = ¢ and the jet
bundle J'm with coordinates (¢, z,vy,, 7). We can describe this system by the
Lagrangian L : J'vr — R:

1

and the constraint
p=yz+ (f(t) —z)y=0.

A direct computation shows that

1
0, = §m(:i:2 + 9*)dt + midz + mydy ,
Q, = madz Adt+ mydy Adt + mdz Adz + mdy Ady,
L = 942 140
L= 9t T T Yay

Consider the 1-form p = ydz + (f(¢t) — z)dy. We have that

po=ydz + (f(t) — z)dy — 2ydt — y(f(t) — z)dt .
The vector field Z such that i,Q; = i and izdt =0 is
Yy (W-oa

Z= m 9% m oy

Now,
1

C=—— (" + ()~ o)),

and then the proyector Q is given by

Q=C"'ZQd
1

J 0
TR gIr e (v + 60 ‘””)a_y)

® (:bdy +ydi + %%ydt — ydz + (f(t) — a:)dg)) .
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Finally, the solution of the constrained dynamics is the vector field

Pler) = 5+ +ig
v 4+ (f(t) —xz)2 0t’ 0z 2+ (f(t) —z)2 0t' 9y

So, the solutions of the dynamics are the ones of the following system of non-
autonomous second order differential equations

[1]

[10]

1)

oo _ vy of

2+ (f(t) —z)* Ot

S UG- or

Y2+ (f(t) —z)* ot
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