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1. INTRODUCTION

Specialized literature (Bate et al. [1], Fox [2], Herrick [4], Merson [5],
Roy [6], etc.) concerning studies on Orbital Dynamics usually mentions the
Gauss-Jackson or sum squared (3.°) method for the numerical integration of
second order differential equations. However, as far as we know, no detailed
description of this code is available and there is some confusion about the
order of the method and its relation with the Stérmer method. In this paper
we present a simple way of deriving this algorithm and its corresponding analog
for first order equations from the Stormer and Adams methods, respectively.
We show that the Gauss-Jackson method can be conceived as a consequence of
this, and therefore there is no difficulty in determining the order of the method.
Finally, we obtain an initialization technique for its implementation, we show
an advantage of it as compared with the traditional multistep methods when
applied in PEC mode by suppressing the corrector stage in the intermediate
steps.

2. GAUSS-JACKSON METHOD FOR FIRST ORDER EQUATIONS

Let us consider the initial value problem

The Gauss-Jackson method for this problem admits the expression (see Merson

[51)

l
(2) Ykyr = h | V7 fe + ZFjijk )
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where the coefficients F; are obtained from the generating function
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Let us consider now the Adams-Bashforth method of order [ + 2:

j=1

I+1
(4) Vi1 =h (fk + Zajvjfk) .

If the operator V~! acts on both sides we have

+1 l
(5) Yy =h (V_lfk + Zajvj—lfk) =h (V_lfk + ZajHijk) .

Formula (5) is similar to (2). The generating function for the coefficients of
the Adams-Bashforth method is (see Henrici [3])

t
(1 —1t)log(l—1¢)"

(6) Ga(t) = —

By simple calculations we arrive at the relation
Ga(t) —1
t b
and after carrying out Taylor expansions we recognize that F; = o, and

therefore the Gauss-Jackson method is a reformulation of the classical Adams-
Bashforth code.

(7) Gi(t) =

3. GAUSS-JACKSON METHOD FOR SECOND ORDER EQUATIONS

The Gauss-Jackson method for the initial value problem

(8) y=1f(=z,99), y(0) =y, y(0) =,

is given by the formulae [5]

!
(9) Yy1 = h (V_lfk + ZFjijk) )

Jj=0

!
(10) Yey1 = h? (V—sz + Zijjfk) )
=0
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where the coefficients C; are obtained from the generating function

1 1
I—f(og(i—Dy &

(11) Gs(t) =

As we have shown in the preceding section, Formula (9) corresponds to the
Adams-Bashforth method, and we can prove that Formula (10) describes
Stormer method.

Indeed, Stormer’s formula is given by

1+2
(12) V2yk+1 = h? (fk + Zﬂjv]fk> .
j=2
Letting the operator V=2 act on both sides we have
l .
(13) Y1 =B [ V2 + ) B VS | -
Jj=0 ‘
The generating function for the Stormer method is
t |
14 =
(14) 60 = (g0 =9) 70
and proceeding in the same way as in Section 2, it is easily verified that
Gy(t) —1
(15) Go(ty = 2 =1,

whence C; = 342, and the Gauss-Jackson method for second order equations
can be conceived as a reformulation of the Stormer algorithm.

4. INITIALIZATION OF GAUSS-JACKSON METHOD

In order to implement the Gauss-Jackson code we have to know the values
of V71 f, and V~2f,. Let us suppose that we have computed the set of values
fosf1,--- fiy1 by a starting procedure. From these values we can construct
the differences V7 f, 1, 7 =0,...,l + 1. From Equations (4) and (5), taking
k =141, after subtracting we get

1 ! .
(16) Vi = FYt > (o — ajy1) V2 fipr + e V7 i

=0
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fo
Vi
fi V2 f
Vfa V3 fs
fa V2 f3 V4 f4
Vs V3 f4 Vo fs
f3 V2 fy Vifs Ve fo
Vs V3 fs V? fo V7 fz
fa V2 fs V4 fs Ve f; V8 fs
Vs V3 fe V2 fr V7 fs
fs V2 fg V4 fr Ve fs
Vfe V3 fq V° fs
fe V2 fr Vs
V fr V3 fs
fr V2 fs
Vfs
V~2f; fs

Table 1. Table of differences.

For k > [+1, the values of V™! f; are easily calculated: V71f, = V= fi_ | + fi.
We can determine V~2f; in a similar way. By combining Formula (12)
with Formula (13), we obtain

1 ! ,
(17) V2= Y + Z(ﬁjﬂ — Bi2) V2 fiir + Biaa V' i

=0

With Formula (17) we can get the initial value of V=2f;. And for k > [, the
values of V~=2f, are given by V72f, = V2f,_ + V71 f.

In Table 1 we show the set of differences required to initializate the method
“for 1=7. The values V7 f; , 5 > 0 are calculated using the fact that VI f,, , —
Vif, = Vit fi 1. The values V7! fg and V~2f; are determined with Equa-
tions (16) and (17), respectively, The table presented by Merson [5] differs
from ours (Table 1) in that he had to resort to a previous knowledge of an
additional set of differences.
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5. GAUSS-JACKSON METHOD IN PEC MODE

In this section we will restrict ourselves to considering the performance of
the method for first order equations. The results are similar for second order
equations.

The implicit Gauss-Jackson method obeys the formula

!
(18) Yy1r = h (v_lfIH-I + Z(%‘H - aj)vjfk+1)

=0

(19)

=0

-1
h (V_lfk + Z aj+1vjfk) + hoy 1 V' frgr -

With the help of this expression we can write the implicit method in PEC
mode. The predictor stage will be the explicit Gauss-Jackson method of order
[+1,

-1
(20) Urt1 = h (V_lfk +> a]-Hijk) )

Jj=0

the evaluation stage employs

(21) frrr = [(Zrg1, Trr1) »

and the corrector produces

(22) Yet1 = Ypg1 + haz+1vlfk+1 .

We realize that the next step does not require the value of y;,;, and so we
can avoid the corrector stage (22) at the intermediate steps and only use it at
the point at which we seek the approximation to the solution.

This conclusion represents an advantage over the Adams form of the meth-
ods, because it has not any analog when we write the method in this last form.
Adams-Moulton method has the expression

141
(23) Y1 = Ykt b (0 — 1)V fin
=0
l .
(24) = Yk + h Z a]VJ fk + ha[+1vl+lfk+1 .

§=0
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Maintaining the above notations, we have the three following stages:

l
(25) U1 = Ye+h Z VI fi,
§=0
(26) frr1 = f(@ga, gk+1) )
(27) Yetr = Yrt1 + hogpy Vl+1f1c+1 .

With this formulation we can not suppress the corrector stage, because we
need the value of y;,, for the next step.
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