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1. INTRODUCTION AND MOTIVATION

Within the framework of the elliptic-type two-body motion, Ferrandiz &
Ferrer (1986) and Ferrdandiz, Ferrer & Sein—Echaluce (1987) replaced the phys-
ical time by a fictitious time (in fact, a family of them) as the new indepen-
dent variable for the integration of perturbed Kepler problems. They used
the method of linearization by means of a time transformation on introducing
a family of generalized anomalies defined via a differential relation in which
the linearizing function depends on certain parameters which can be taken as
functions of some orbital elements. In the case of pure Kepler problems, they
analytically integrated their time transformations, in closed form, by means of
elliptic integrals and functions. Their developments were originally intended
to facilitate the analytical treatment of dynamical problems (and particularly,
the study of artificial Earth satellite orbits under a zonal model of geopotential
on the basis of some radial intermediaries), and as a preconditioning of the
problem prior to numerical integration.

Within the same framework, and for analytical step regulation (see Section
2 below) in numerical integration of highly eccentric orbits, E. V. Brumberg
(1992) proposed the use of orbital length of arc as independent variable. He
also replaced the physical time ¢ by a pseudo-time introduced via a differential
relation generalizing the well-known and widely used Sundman transforma-
tion (Sundman 1912, p. 127 and p. 174), and made to fit his derivation into a
more general pattern of two—parameter time transformations resembling that
of Ferrdndiz and his collaborators. In fact, comparison with the results at-
tained by these authors reveals that the parameter used by Brumberg does
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not belong to the class of the generalized elliptic anomalies considered by
them, and such a parameter cannot be obtained from the proposals due to
these authors, although it is related to ¢ by an equation similar to theirs.

Brumberg himself (1992, p. 325) pointed out that his time transformation,
say his Formula [14], is applicable to any kind of Keplerian orbit. Neverthe-
less, neither a proof nor the least hint was adduced in this sense. In fact,
his derivation was drastically limited to, and strictly based on, the explicit
consideration of geometrical and dynamical relations and properties holding
for ellipses. To start with, we intend to modify and adapt his elliptic motion
derivation and treatment of the problem in order to take into account other
cases of Keplerian orbits.

Accordingly, the motivating point at the origin of the present research was
the question whether (and how) Brumberg’s (1992) study could be rendered
applicable to the orbital length of arc in the case of non-elliptic Keplerian
motion, and particularly on a hyperbola or a parabola. These questions can
be answered on the stage of a universal formulation of two—body motion. Thus,
the aim of the present paper is to make a general derivation of the length of
orbital arc as independent variable, universally valid for Kepler problems.

For our current purposes, the question considered here is, in principle,
of theoretical interest. Examples of application of sets of universilly valid
formulae, in terms of universal variables and parameters, for use in various
real astronomical or astrodynamical situations will be postponed until future
work. Anyway, further analytical or semianalytical developments and numeri-
cal studies will be treated by other members of the Grupo de Mecanica Celeste
at the Departamento de Mateméatica Aplicada a la Ingenieria (Universidad de
Valladolid.)

For these reasons we consider that a justification and a rigorous extension
of Brumberg’s approach is pertinent for future practical applications, specially
for the derivation of analytical expressions when constructing a perturbation
theory for highly—eccentric orbits.

Since universal-like functions provide an adequate and powerful tool for
the study of problems of orbital motion, and particularly for a compact rep-
resentation and treatment of analytical solutions of the two—body problem,
we shall devote (Section 4) some attention to a brief glance at their definition
and basic properties. It must be mentioned that the use of universal functions,
along with appropriate changes of integration variable, will allow us to reduce
the integration of the reparametrizing transformation to that of some algebraic
functions.
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2. WHY REPARAMETRIZATIONS OF TIME?

It is shown in traditional and elementary reference texts that the time
dependence of the variables in the solution of the problem of two bodies cannot
be expressed by closed form functions, i. e. the classical Kepler problem cannot
be analytically solved in terms of closed form, explicit functions of the time.
However, closed—form exact analytical solutions can be obtained with the help
of adequate independent arguments other than time, although such arguments
cannot be expressed as closed—form, explicit functions of time. As a general
rule, obtaining the value of these parameters for a given time requires either
the inversion of a transcendental equation or its numerical solution.

Moreover, in many practical cases for space research, apart from theoretical
investigations concerning perturbed motion, the improvement of numerical in-
tegrations is also to be taken into account. In general, the integration accuracy
along the orbit is not uniform. For instance, integrating highly eccentric or-
bits involves fast varying functions; nevertheless, some transformations of the
independent variable can smooth out a part of the variations of the functions
in such a way that a constant step—size method can also be used.

To this end, while seeking numerical solutions, for large eccentricities in
the elliptic case (in fact, for e > 0.2), the spread of points on the orbit (for a
constant time step) is improved after appropriate changes of the independent
variable generalizing a transformation due to Sundman (1912, p. 127 and p.
174.)

In this respect, one of the main advantages of choosing other indepen-
dent variables is the improvement in the distribution of the integration points,
without disregarding the fact that rigorous application of certain algorithms
requires other time parameters to be used as independent variables. We em-
phasize the practical importance of such smoothing transformations in order
to improve the performance of standard integration methods.

In other words: to ensure a sufficiently smooth step-size distribution along
the orbit for equidistant values of the independent argument, and avoid an
unreasonable accumulation of integration steps in the neighbourhood of certain
points and their excessive dissemination along other parts of the orbit, i. e.
to achieve an adequate analytical step—size requlation, a reparametrization of
time can be performed.

Consequently, in order to obtain the solutions of various problems involving
gravitational dynamical systems, defining an analytical step—size regulation
was one of the purposes of introducing reparametrizations of time.

As for our own interest, we are mainly concerned with analytical aspects



318 L. FLORIA

of Orbital Dynamics of artificial Earth satellites, and leave to our colleagues
the merit of computing highly eccentric Earth satellite orbits with special
perturbation methods.

As a conclusion of the preceding remarks, for the numerical computation of
two-body orbits, the introduction of certain adequate independent variables
achieves an analytical step-size regulation. In addition to this, they have also
been employed in analytical and qualitative studies.

3. WHY UNIVERSAL FORMULAE?

In this paper we aim to show that the approach taken by Brumberg to use
the length of arc is not limited to the case of elliptic motion. Consequently, the
present research is devoted to a general and systematic derivation of this kind
of adapted time parameter within a universal formulation of the two-body
problem, which leads to a unified treatment and compact representation of the
motion. This approach is intended in the following sense: irrespective of the
nature of the specific Keplerian orbit at hand, Brumberg’s developments will
be generalized and adapted to yield a uniform treatment of Kepler motion (also
in line with the contents of Battin 1987, §4.5 and §4.6; Stiefel & Scheifele 1971,
§11; Stumpff 1959, Chapter V, §41), which suggests a nonsingular transition
between different types of two—body orbits.

In particular, we have in mind the universal-variable formulation and ana-
lytical treatment of perturbed Keplerian dynamical systems (e. g. the problem
of perturbed highly eccentric elliptic orbits of artificial satellites), and the
transition between reference orbits of different nature while performing pertur-
bation studies, especially when a universal-like independent argument is put
in the place of the independent variable.

In this context of studies concerning elliptic-type orbital motion, highly
eccentric orbits are clearly close to the bifurcation case represented by parabolic
motion, and it is well known (Stiefel & Scheifele 1971, §11, p. 42) that the
type of orbit is occasionally changed by perturbing forces acting during o finite
interval of time.

Thus, parabolic orbits are of great interest since they enjoy a singular prop-
erty: only one highly special value of the energy results in parabolic motion.
When this value is close to zero the actual orbit might be an ellipse (small
negative value for the energy), a parabola (exactly zero energy) or a hyperbola
(small positive energy value.) The trouble is that the process of determina-
tion or evaluation of dynamical variables is usually vitiated by uncertainties
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or errors of diverse origin (astronomical data and observations, initial con-
ditions, numerical calculations, etc.), from which the constant of energy is
determined only approximately. Therefore, from a theoretical point of view,
parabolic orbits are of significant interest because they constitute examples
of non-predictable orbits: a possible failure of predictability in establishing
the nature and evolution of motion might be expected. Moreover, this lack
of predictability brings up some other questions and consequences relating to
qualitative properties of near parabolic orbits, such as stability.

In addition to this, the picture is considerably complicated if some other
disturbing effects are allowed for in a model of problem of two bodies: atmo-
spheric drag, solar radiation pressure, propulsion, perturbations due to other
external bodies, etc.

We intend to soften some of these undesirable and troublesome effects
by establishing sets of universally valid formulae within the framework of an
encompassing treatment of two-body problems. It is expected that our option
for future analytical developments in working out perturbation theories will
benefit from the generality and intrinsic merits of a universal approach.

With this general aim in view, an essential analytical tool is provided by
certain classes of special functions, the so—called Stumpff c—functions (Stumpff
1959, vol. I, §37 and §41; Stiefel & Scheifele 1971, §11, pp. 43-45) and uni-
versal U-functions (Battin 1987, §4.5 and §4.6). These functions can be con-
templated as generalizations of the standard trigonometric and hyperbolic
functions, and their application is intended to avoid having to distinguish be-
tween elliptic, parabolic or hyperbolic motion. Elliptic integrals and functions
will also play a significant role in certain developments.

4. UNIVERSAL FUNCTIONS AND SOME BASIC PROPERTIES

The following definitions and properties can be found in, or easily derived
from, the references Stiefel & Scheifele (1971) §11, pp. 50-51, Stumpff (1959)
§37 and §41, Battin (1987) §4.5 and §4.6.

A traditional technique to introduce certain families of special functions
resorts to the study of power series solutions to linear differential equations.
The Stumpff c—functions (Stumpff 1959, §37, §41; Stiefel & Scheifele 1971, §11)
are a family of transcendental functions whose first members integrate, under
a unified treatment, the model of second-order linear differential equations
with constant coefficients

d*y/ds* + oy = 0,
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whatever the sign of the parameter p. It should be borne in mind that, after
appropriate changes of the dependent and independent variables, this is just
the type of equation to which the differential equations of motion governing
the Kepler problem can be reduced, the parameter g being then related to the
value of the energy of the two-body system.

With the notation z = ps?, the general solution to the above equation can
be represented as a linear combination of the Stumpff c-functions ¢y(z) and
c¢1(z), this representation being independent of the sign and value of p. In
general, these functions obey the defining relation

sl k

1) cale) = (-1

k=0 mv n=0’1,2,”_,withz=982,

the power series being absolutely convergent for all values of the complex
variable z (whence the series converge for all s regardless of p.) In particular,
they are real-valued functions for real values of z.

Some calculations involving these functions are simplified if the alternative
universal functions introduced by Battin are used. To this end, for each n =
0,1,2,..., put (Stiefel & Scheifele 1971, §11, Formula [36])

o0 2k+n
2 = s"c(0s?) = S (=1)foF o n=0,1,2,....
( ) Un(sag) s cn(gs) kgo( ) g (2k+n)!1 n 01 12’

Other equivalent defining relations can be found, e. g. in Battin (1987),
84.5. For future reference, we quote some useful properties and identities:

3) dU,/ds = U,—;, n=123,...,
4) 1 = Us+eUl UF=U,(1+0,), U?=2U,—Uj.
For convenience, the quantity

(5) L = ull-e)/2

is the negative of the energy of the Keplerian orbit at issue (see Stiefel &
Scheifele 1971, p. 50, Formula [64]), where u represents the gravitational body-
centric parameter of the two-body system, e is the eccentricity, and ¢ stands
for the distance of the pericentre. When needed, we take ¢ = 2L.

In terms of s as the argument of universal functions, the two-body problem
admits closed form representation of its analytical solution in a compact, uni-
fied and universally valid (say, whatever the type of orbit) form. Indeed, using
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Cartesian rectangular coordinates (z,y) in the orbital plane, a closed form
solution for these orbital coordinates and the modulus r of the radius vector
in the two—body problem in terms of the universal eccentric-like anomaly s
as the independent argument can be presented with the help of universal-like
functions, and reads:

(6) Tt = q-—ps’cy(2Ls®) = q — plsy(s,2L),

() y = y/pa(l+e)sci(2Ls?) = 1/ pq(l + e)Ui(s, 2L);
(8) r = q+ pes’cy (2Ls*) = q+ pel; (s,2L);

(9) t = gs+peUs(s,2L) (Kepler’s equation).

The dependence of the argument s on time is determined by the above Ke-
pler equation. Notice that the fictitious time parameter s, proportional to the
classical eccentric anomaly in the cases of elliptic and hyperbolic motion, is
introduced through Stumpff’s generalization (1959, §41) of Sundman’s regu-
larizing transformation (Sundman 1912, p. 127), which defines s by means of
the differential relation

(10) dt = rds (Sundman’s transformation),

where s vanishes at the chosen reference time. As a usual practice, this time
variable is chosen so that the pericentre corresponds to s = 0. Observe also
that s only occurs implicitly in the equation for the radial distance r, and in
Kepler’s equation for the physical time, through the transcendental Stumpff
¢, and Battin U, universal functions.

5. PROOF OF THE UNIVERSALITY OF BRUMBERG’S TRANSFORMATION

Let do denote the arc element along a two-body conic section. Starting
from Formulae (6) and (7), after differentiation with respect to s and use of
Formulae (3) and (4), we obtain

(7) = (&) (@) -cmomy
+ ( ug(1 + e)Us(s, 2L))2 = u?U}(s,2L)

+pq(l+e) — p? (1 - €*) Ui(s,2L),
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and so, the parameters ¢ and s are connected with each other by the differential
relation

(11) do = \/uq(l + e) + p2e?Ug(s,2L)ds.

On the other hand, application of the chain rule along with Formulae (10),
(11) and (4), yields
dt _ dtds _ (dt/ds) _ r(s)
do dsdo  (do/ds)  /uq(l+e) + p2e2U2(s,2L)

(12)

To obtain another expression for the reparametrizing function occurring in
Formula (12), more easily interpretable within the framework of two-parameter
transformations of the independent variable, we perform the sequence of sub-
stitutions U; — Uy — 7, namely, we express U; in terms of U, [Formulae (4)],
and then, by virtue of Formula (8), we replace U, by r. Thus, the function
under the radical sign in (12) is converted into a simple polynomial in 7, say:
pr{2q — (1 —e)r} /q.

In so doing, the right-hand side of (12) can be transformed to an algebraic
function of r:

dt _ r _\/E ri/?
do ur[g2q—T—e)r Vu2q—(1T—e)r

As expected, under a universal treatment of two-body motion, we have finally
recovered the expression given by Brumberg (1992, p. 325, Formula [14]):

(13)

ri/2

@= V2p — (20)r

Comparison with the time transformations developed by Ferrdndiz & Fer-
rer (1986) and Ferrdandiz, Ferrer & Sein-Echaluce (1987) shows that the in-
dependent argument considered by Brumberg cannot be obtained from the
specific formulations leading to the class of the generalized elliptic anomalies
introduced in those papers, although it can be regarded as a special instance
of a more general notion of two—parameter time transformation, not restricted
to the exponents retained by the said authors.

It should be borne in mind that this way of proceeding can be easily
adapted to the case of a certain class of perturbed Kepler problems which
can be reduced to a Keplerian-like form if appropriate amended variables are
used. The important feature is that the perturbation must be compatible with
a generalized quasi—Keplerian structure.

(14) dt = Qdo,
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6. ON THE INTEGRATION OF BRUMBERG’S TRANSFORMATION

The length of arc o of a Kepler problem, reckoned from the pericentre (at
which s = 0), can be determined by our universal Formula (11). To integrate
this differential transformation of time argument, we perform the change of
integration variable s — v given by

dv
V11— (2L)v?’

taking into account Formulae (4). In this way, the integration of the time
transformation is reduced to that of an algebraic integrand with respect to v:

uq(1 —I- e) + p2e?v?
16 do = d

(15) Uy (s,2L) = v=dv="Uy(s,2L)ds = ds =

where Formula (5) has also been employed.

The intermediate calculations and the final results depend on the roots of
the polynomials occurring in the above expression. In certain cases, elliptic
integrals and functions will be required to complete the integration. Details of
the conclusions and applications of this study will be communicated elsewhere.
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