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Given a Lagrangian system with non-holonomic constraints we construct
an almost product structure on the tangent bundle of the configuration man-
ifold such that the projection of the Euler-Lagrange vector field gives the
dynamics of the system. In a degenerate case, we develop a constraint al-
gorithm which determines a final constraint submanifold where a completely
consistent dynamics of the initial system exists.

1. INTRODUCTION

The theory of classical mechanical systems with constraints comes back to
the last century, but it has deserved a continuous attention up to the present
days because its importance to solve practical problems as in control theory,
for instance.

There are two different meanings for constrained system in Lagrangian
mechanics: “internal” constraints imposed by the singularity of the Lagrangian
function, or “external”constraints imposed by forces of constraint acting on
the regular system. The first type of constraints was studied in the seminal
works of Dirac and Bergmann [8], whose ideas were later developed in the
framework of presymplectic and precosymplectic geometry for many authors
(13, 11, 12, 17, 5]. Almost tangent geometry also deserves a key role in the
theory.

Concerning the second type of constraints, the theory was extensively stud-
ied in the framework of Calculus of Variations (see [9, 29, 31] and the references
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therein, for instance). Recently, several papers have appeared developing a
geometrical setting for this type of constraints: Weber [35, 36], Marle [20],
Bates & Sniatycki [1], Koiller [15], Dazord [7], Massa & Pagani [21] and oth-
ers. Another papers concerning with the particular aspects of the Lagrangian
formulation in terms of almost tangent geometry are the following: Carifiena
& Raiiada [3], Rafiada [28], Carifiena & Rafada [4], Sarlet, Cantrijn & Saun-
ders [32] and Sarlet [33]. (We also refer to Giachetta [10] for a formulation in
terms of jet bundles.) :

The external constraints considered here are usually termed non-holonomic.
This means that there are a family of m affine functions on the velocities
¢i(Q7'U) = (ll'i)A(q)'UA + hi(‘])a (1 <@ < m, 1< A <n,m < n)a which
constraints the motion to be only allowable for some values of positions and
velocities. In other words, the solutions of the modified Euler-Lagrange equa-
tions have to be tangent to the submanifold M; defined by the constraints.
A holonomic constraint is a function g(g) on the configuration space which
can be interpreted as a couple of non-holonomic constraints given by the func-

0
tion g(q) and its derivative, i.e., ¢; = 994 and ¢2 = g. The distinction be-

0
tween holonomic (integrable or geometric% and non-holonomic (non-integrable
or kinematic) constraints is due to H. R. Hertz [14] (see also [22]).

The classical way to treat with non-holonomic constraints is to use La-
grange multipliers. In [3, 28] this technique was developed from a geometrical
point of view. In this paper, our aim is to go further in that direction. Thus,
we construct an almost product structure on the phase space T'Q of velocities
of a Lagrangian system with non-holonomic constraints such that the dynam-
ics are obtained by projecting the Euler-Lagrange vector field which solves
the motion equations of the free problem. (We notice that almost product
structures in Lagrangian mechanics were early used by de Leén & Rodrigues
(16, 18], Pitanga & Mundin [24, 25] and de Le6n, de Diego & Pitanga [19]).

v In our analysis we have two different kinds of behaviours. From the tan-
gency condition, we obtain a system of m equations with m unknowns (the
Lagrange multipliers) whose solutions give the appropiate values for the La-
grange multipliers. By scrutinizing these equations we have two possibilities:
the system has a unique solution (when the matrix C of the coefficients of the
system of equations which gives the Lagrange multipliers has maximal rank
k = m), in such a case we obtain a well-defined vector field on T'Q (at least,
on M,); or the matrix C has rank £ < m. In the latter case, assuming the
compatibility of the system of equations, we get a dynamics up to the choice
of m — k arbitrary Lagrange multipliers. Otherwise, if the system of equations
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is not compatible, we take the points of M; where the system has a solution,
and then we obtain new constraints which define a submanifold M, of M;. If
M, has zero-dimension or M, = (), then there are no dynamics. Otherwise, we
incorporate the new constraints to the analysis and obtain, from the additional
tangency conditions, a new constrained submanifold M3, and so on. This al-
gorithm produces a sequence of submanifolds --- M3 C M, C M; C TQ. If the
algorithm stabilizes in some final constraint submanifold, we can determine a
well-defined dynamics by constructing an adequate almost product structure,
or, in the worst case, the dynamics is fully undetermined. We remark the
similarity with the Dirac-Bergmann-Gotay-Nester algorithm ([11, 12]).

The paper is structured as follows. In Section 2 we recall the geometric
formulation of Lagrangian systems subjected to non-holonomic constraints
and construct an almost product structure on the phase space which permits
us to obtain the true dynamics by projecting the Euler-Lagrange vector field
corresponding to the free problem. A constraint algorithm is developed in
Section 3 for the non-regular case. If the algorithm stabilizes in some final
constraint submanifold, a suitable almost product structure is constructed on
it. The holonomic case is considered in Section 4 and, in Section 5, a discussion
of the symmetries and constant of the motion of non-holonomic Lagrangian
systems is made. The Hamiltonian counterpart is studied in Section 6.

2. NON-HOLONOMIC LAGRANGIAN SYSTEMS

Let @ be an n-dimensional manifold, T'Q) its tangent bundle, and
7o : TQ — @ the canonical projection. We will denote by {¢g*;1 < A < n}
a set of local coordinates in @ and by {¢*,v4;1 < A < n} the induced coor-
dinates in T'Q).

We denote by J the canonical almost tangent structure on 7'Q). Let us
recall that J is a (1,1) tensor field on T'Q defined by

J ®dg” .

T oA
Hence J? = 0 and rank J = n (see [17] and the references therein). The
other geometric ingredient of T'Q is the Liouville vector field C, which is the
infinitesimal generator of the dilations along the fibres. We locally have

4 0

C:’U W

Suppose that a regular Lagrangian is given, that is, a function L : TQ —
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R such that its Hessian matrix

0?L
Wap) = | ===
(Was) <8UA(9UB )
is regular. Then we can construct an energy function Ep, a one-form «j, (the
Poincaré-Cartan 1-form), and a 2-form w;, (the Poincaré-Cartan 2-form) on

TQ by
EL=CL—L, aL:J*(dL),sz—dozL.

We recall that, since L is regular, wy is symplectic and, in this case the
motion equation for the free Lagrangian system is

(1) inL = dEL .

These equations have a unique solution &; (the Euler-Lagrange vector field).
Moreover, £;, turns out to be a second order differential equation (hereafter
shortened as SODE), that is, &, verifies that J¢, = C.

The local expression of £, is

15} 0
_ AT A _
§L_'U an_i_é' (q’v)a'UA b
where SL L
A _ yyAB | 9L c
S=w [an 8q°8vB " ] ’

being (W48) the inverse matrix of the Hessian matrix. Therefore, the solutions
of £, are the solutions of the Euler-Lagrange equations:

d(&L) oL _,

dt \ovA)  dgA
vA—%(1<A<n)
Codt T T

Since wy, is symplectic it induces a Poisson bracket on C*(T'Q) defined by

{fag}L = wL(Xf7Xg) ’ V.fag € COO(TQ) )

where X; denotes the Hamiltonian vector field with Hamiltonian energy f,
that is, ix,w, = df. Hence £, = Xg, and {f,E.}; = £.(f)-

We assume that L is subjected to a system of m independent non-holonomic
constraints {¢;;1 < i < m}, where m < n which are affine in the velocities;
that is, ¢; : TQ — R is a function which can be locally expressed as follows:

(2) éi = (i) a(@)v? + hi(q) ,
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where (p;)a and h; are functions on ). Hence, only particular motions are
allowed: those such that (2) vanishes.
Let us recall that an affine function ¢ = p4(q)v+h on TQ may be globally
defined as follows:
b=i+h,
where p = p4(q)dg” is a 1-form on Q and h* = ho7g. Here i : TQ — R
denotes the function defined by

A(X,) = (), Xq) , VX, € T,Q .

Thus, there are m 1-forms {p;} and m functions {h;} defined on @ such
that
¢i=fis +hi, (1<i<m),

with p; = (us) adg”.

We have to restrict the dynamics to the submanifold M; of T'Q defined by
the vanishing of the functions ¢;. The Euler-Lagrange vector field £, is the
unique solution of the free Lagrangian system, but, in general, &, is not tangent
to the submanifold M,;. However, the dynamics of the constrained system
must be represented by a vector field which is a solution of the dynamics and,
moreover, it is tangent to M;. Therefore, we modify the motion equations (1)
to obtain the following system of equations:

3) (ixwp = dEL + )\i,uf)/Ml ,
(4,(X) = 0),,, -

where pj = 75p;. The functions A" are Lagrange multipliers.
Hence, the Euler-Lagrange equations are:

i <8_L> _B_L—_)\i( )
dt \ovA )~ agh A
vt = @ (1<A<n)
a0 T
For an m-tuple A = (A!,...,A™), we take the vector field Y, given by
V=& + N2,

where Z; are the vertical vector fields (see [3]) defined by:

. v
lz,Wp = HU; -
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Notice that Y) verifies the first equation of the system (3). We also demand
that Y, satisfies the second condition, thus, Y, has to be tangent to M;.
Therefore, we obtain that:

0=dg;(Ya) = de(éx+ NZ))
= {¢;, Er}r + XN Zi(9)) -

Denote by C the matrix of order m whose entries are C;; = Z;(¢;). If C is
regular, then, the Lagrange multipliers \; are uniquely determined on T'Q). For
example, if L is a natural Lagrangian (i.e., L = T—V, where T = %gAquAqu
is the kinetic energy of a Riemannian metric g on Q and V : Q — R is a
potential energy) then the matrix C is regular (see [1, 3]).

First, we assume that the matrix C is regular on 7'Q). Our purpose is to
construct an almost product structure on T'Q) such that the projection of the
Euler-Lagrange vector field £, gives the dynamics of the system. We recall
that an almost product structure on a manifold M is a tensor field F' of type
(1,1) on M such that F? = id. The manifold M will be called an almost
product manifold (see [17]). Associated with F' there are two complementary
projectors P = 1(id + F) and Q = %(id — F). Thus, an almost product
structure consists in to give two complementary distributions.

Consider the (1,1) tensor field Q given by:

Q = Ciij ® d¢z ]

where C* are the entries of the inverse matrix of C, that is, C9Cj, = di. A
direct computation shows that Q% = Q. If we set P = id — Q, then (P, Q) is
an almost product structure on the phase space T'(). Moreover, we have that
the vector field P(£.) is the unique solution of equations (3). In fact,

P(fL) =& — CijfL(‘ﬁi)Zj s

which implies that P(£.) verifies the equation (3) for X' = —C7¢;(¢;). Fur-
thermore, for all ¢, (1 <1 < m), we have

P(ﬁL)(d’t) = fL(‘i’t)‘CijfL(fﬁi)Zj(ﬁbz)
= &(d) — 6i€(¢s) = 0.
REMARK 2.1. Take now another combination of the non-holonomic con-

straints, that is, we consider the new non-holonomic constraints q—Sj = D;k;bi
where D} € 75(C*(Q)) being the matrix (D}) regular on TQ. Applying
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the previous technique to the Lagrangian L and the constraints ¢;, we can
construct a new almost product structure (P, Q) such that the projection of
the Euler-Lagrange vector field, say P(£1), determines the dynamics of the
constrained system. But, a straightforward computation shows us that the
projectors P and P are equal on the phase space M;, that is

P/Ml = ﬁ/Ml .

REMARK 2.2. A more general kind of constraints were studied in the lit-
terature. The constraint functions are not linear in the velocities, but satisfy
the so-called Chetaev conditions (see [23, 30, 35]). The study of this case
by using the geometrical procedure introduced in this paper is a matter of a
future research.

EXAMPLE 2.1. (see for instance [22, 31, 3, 32]) Consider a rolling disk of
radius R constrained to remain vertical on a plane. The standard coordinates
of the configuration space R x S! x §! are: z,y the Cartesian coordinates of
the center of mass, 6, is the angle between the tangent of the disc at the point
of contact and the z axis and 6, is the angle given by some diameter and the
vertical.

The dynamics of this mechanical system is described by:

1. The regular Lagrangian:
1 . : :
L= 5 (m$2 + my2 + Ilgf + I29§) 9
where m is the mass, and I, and I, are moments of inertia.
2. The non-holonomic constraints:
¢ = &— (Rcos)f, =0,
¢y = §— (Rsinb)8,=0.
The Poincaré-Cartan 2-form of the Lagrangian L is:
wy, = mdz A di +mdy A dy + 1,d6; A db, + L,db, A db,

and the Euler-Lagrange vector field is:

.0 .0 . 0 . 0
fL—$5;+y%+91-8-E+92—872.
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We have that

10 R 0
Zl = '__T;L"a_j:+I_2C030150.—2,

10 R 0
Zy = ———2=+ —sinf—,
2 may I2 1802

where p; = dz — (Rcos 6,)d0, and py = dy — (Rsin6,)df, are the 1-forms such
that f; = ¢;, = 1,2. We construct the matrix C given by

C=(C) = Zi(d) Zi(éa) \ _ _%—I;_:(Cosgl)z _?—:COSHISinel
Y Zs(¢1)  Za(¢2) —’}—:cos01$in01 —#—-’}:—(Sinﬂly

and the projector Q becomes
Q = Ciij ® dd)z .

Observe that C is regular over all T(R? x S x S1).
Now, we compute P({.,) with P =id — O:

P(ér) = & — Q&)
= é-L + (mR0192 sin 01)Z1 - (mR0102 COs 01)22 .

If we can only state that the matrix C = (Z;(¢;)) is regular on M; then we
construct a (1,1) tensor field along M;, i.e.,

P(z) : T.(TQ) — T.(TQ), Vre M,

defined as follows:
P = (Zd - Ciij ® d¢,)

/M1 '

In this case, we can determine the Lagrange multipliers A\’ only for points z
on M,. The projection P((£1)/,,, ) gives us a vector field tangent to M; which
determines uniquely the dynamics of the Lagrangian system subjected to the
constraints ¢;. It is clear that if C is regular on M, then it is regular on an
open neighbourhood of it.
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3. THE NON-REGULAR CASE

Now, we shall study the remaining case: the matrix C is non regular. It will
be assumed that over all M, the matrix C has constant rank k, with k < m.
We examine the equations:

(4) 0={¢;,EL}L +XZi(¢;), (1<j<m).

It is possible that (4) give directly an inconsistency (type 0 = 1), and then
we say that equations (3) are inconsistent. In order to avoid this problem,
we impose, as in the Dirac-Bergmann algorithm [8] (see also [11, 12]), the
condition that these equations do not involve an inconsistency. In such a case,
the number of Lagrange multipliers A\ determined by the equations (3) is k.
Moreover, new constraints 9y, (1 <4’ < m'), with m' < m —k, may arise. We
obtain a new constraint submanifold M, determined by the vanishing of the
constraints ¢; and ;. Moreover, we must incorporate these new constraints
1y to the equations (3) to get a new set of motion equations:

('ixwL = dEL + )‘i'u'g)/mg )
(5) (dpi(X) =0),,
(dys(X) =0),,,

The tangency of X to M, gives us the equations:

0={vi, B} +XNZ;(%hs) .

We incorporate these equations to (4) and this system of equations has to be
treated on the same footing as (4) and, probably, we determine new Lagrange
multipliers A\’ and other constraints may arise. This procedure finishes when
we have exhausted all the consistency conditions. If the initial problem is
solvable, we arrive at some final constraint submanifold My, determined by
the vanishing of all the constraints, where “consistent” solutions exist. In this
process, some Lagrange multipliers may remain undetermined, in such a case
we say that there exists an ambiguity in the description of the dynamics.

In order to illustrate the above procedure, we particularize for the case of
a Lagrangian system subjected to a unique linear constraint ¢ = fi+ h?, where
p is an 1-form on @ and h € C*(Q). The modified motion equations are:

ixwL = dEL + A[llv ;
d(X) 0.
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Since X ¢ = 0 then we obtain that:

If Z(¢) # 0 we deduce that the value of the Lagrange multiplier is
A= — {d)a EL}L
Z(¢)
and the dynamics is given by the SODE
{d)a EL}L
Yy=¢ — —L—=7.
T T

If Z(¢) =0 and {¢, Er} = 0 on M; then we obtain that the dynamics of the
system is determined on M; by

YA=§L+AZ7

for all arbitrary values of A\. However, if Z(¢) = 0 and {¢, EL}; # 0 on M,
equation (6) would be satisfied only on a submanifold M, of M, given by
the constraint v = {¢, Er}.. Preservation of the constraint 1 requires that
X (1) = 0. Thus we obtain the equation:

As above, if Z (1) # 0, then, the Lagrange multiplier is fixed and the dynamics
is determined on M, by

e 2

On the other hand, if Z(v) = 0 and {¢, E.};, = 0 on M, then the dynamics
is fully undetermined. In other case, we obtain a new constraint. One then
iterates this procedure, arriving at some final submanifold M; (if the problem
is solvable) where there exists at least a solution of the initial problem.

EXAMPLE 3.1. Let L : TR®> — R the regular Lagrangian function given

by .
L= (0 + @ - ),

subjected to the linear constraint

blgq,v) = v* + 0.
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Here {¢', ¢%,¢*,v',v*, v} denote the bundle coordinates in TR®. We have

By = L(0)P+ @ -0 =L,

2
wp = dqll A dvt + dg® A dv? — dg® A dv?
0] 0 0
& = V41— 4+ —==C.

dq dq? dg

The 1-form p = dg® + dg® on R® verifies that i = ¢ and, the vector field Z
such that
izwyp = p',
is given by 5 5
Z —_ _w + -85 .

Since Z(¢) = 0 we must consider the new constraint ¢ = £,($). But ¢
identically vanishes and we conclude that we can not determine the Lagrange
multiplier \. Remark that for each A we obtain a solution Y, = £, + AZ of
the motion equations. Consequently, the dynamics is fully undetermined.

Notice that L may be considered as the kinetic energy defined by a Lorentz
metric G = (dg")? + (dg®)? — (d¢®)? on R®. The Euler-Lagrange equations for
L are just the differential equations yielding the geodesics of the Levi-Civita
connection. In fact, the geodesic spray is just £;,. For the constrained problem
there is not a unique “geodesic spray”, any SODE £, +\Z yields an admissible
dynamics.

ExaMPLE 3.2. Consider the regular Lagrangian on TR® given by

L = 5 ((1)1)2 + (’U2)2 _ (’03)2) + %(q1)2 )

subjected to the linear constraint
$(g,v) = v' +0*.

Then ¢ = fi, with pu = dg* + dg>.
A direct computation shows that:

1 1
B, = L0+ 0P - 07 - (@),
wp = dg¢' Adv' +dg® Adv? —dg® Adv?

0 0
&L = ’UIT'I"UZ—-F’U == tq¢ —.
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The vector field Z, such that izw;, = u® is

0 0

7-_9 .9
5ol T BoP

Since Z(¢) = 0 we obtain the new constraint ¥ = £,(¢) = ¢q'. Hence we
obtain a submanifold:

M, = {(ql’ qz,q3,v1,v2,v3) ] v' +'U3 = anl = 0} .

Since Z(1) = 0, a new constraint arises; ¢' = £, (1)) = v!, and we obtain the
submanifold M3 defined by

M; = {(ql,qZ’q3,vl',v2’v3) l ql = Oa o' = 0, v = O} .

Moreover Z(y') = —1, and the algorithm stabilizes on the submanifold M;.
Now, we determine the Lagrange multiplier A:

__fL("pl) |
Ty 1

Therefore, we have that the vector field £, + ¢' Z determines the dynamics on
the submanifold M;.

As we have seen, if the matrix C is regular on T'Q, we can construct an
almost product structure (P, Q) on T'Q such that it gives, by projection the
dynamics of the Lagrangian system subjected to constraints. Our aim is to
generalize this technique to the singular case using the above algorithm.

Assume that the matrix C = (Z;(¢;)), (1 < i,5 < m), is singular and
rank C = k < m. Without lost of generality, we can suppose that the subma-
trix C; = (Ci;) = (Zi(¢4)), (1 < 14,5 < k), of C is regular.

The problem is solvable on M, if

(7) (rank (Zi(¢5)) = rank (Zi(#;); {Bz,¢5}0) ),

My

In that case, we can construct the almost product structure (P, Q) defined by
Q=CY2;®dg;, (1<i,j<k),

and P = id — Q, where C% is the ij-entry of the inverse matrix of C;. We shall
prove that the projection P(£;) gives a solution of the constrained dynamics.



NON-HOLONOMIC LAGRANGIAN DYNAMICS 337

In fact, it is only necessary to see that P(£)(¢;) = 0, for any 1 < ¢ < m.
First, for each 1 <[ < k, we have that

PEL)(d) = Enld) —CPe(di)Z;(dn)
= §L(¢z) - CijCjtﬁL(‘ﬁi) =0.

Now, if we consider ¢, ,(k +1 < a < m), we obtain

P(€L)(da) = E(da) — CYEL(¢:) Z;(8a) -

From (7) we deduce that Z;(¢,) = f.Z;(¢1) ,(1 <1 < k), for some functions
Il € C>(TQ). Thus,

P(lr)(da) = Ep(da) —C¢L(¢i)fLZi(d)
= &u(da) — CYEL(¢:) faCi
§L(¢a) - fcleL(@) =0,

since we have assumed that rank (Z;(¢;) ; {Er,¢;}1)
Otherwise, we have that

/M1 =

(8) (rank (Z:(#;)) < rank (Zi(3) 5 {B1,95h0)),
and, then, we obtain a set of additional constraints. By applying the algorithm,
we get a final constraint submanifold M} (if the problem is solvable) given by
the vanishing of constraints x;, (1 <4’ < m'), where m' > m. On M; we have

9) (rank (Z¢ (xy)) = rank (Zi(x3) 5 {Broxi}e))
f

We suppose that the rank of the matrix C' = (Z; (x;)) ,(1 <i <m), (1 <5 <

m'), is constant, i.e., rank C' = k' < m (k < k’). For simplicity, we suppose

that the matrix C; = (C}.;) = (Zi(x;)), (1 <4',5' < k'), is non-singular. As

above, we construct an almost product structure (P, Q) given by

Q=(C")7"Zy@dxy, (1<i,j' <K <m),

and P = id — Q, where (C')?7" is the i'j'-entry of the inverse matrix of C'. For
each solution X = &, + MZ, +X*Z,, (1 <1 <K,k +1< a<m)of the
equation

inL = dEL +Az/.l,f (1 S 1 S m) y
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we obtain that P(X) is a solution of the motion equations. In fact, we have

P(X) = &+NZ+XZ,— (C)7 € (x) 25
—Al(cl)i,j Zl(Xi/)Zjl _ Aa(cl)iljlza(xi,)zj(
= & —(C)7 (Enlxe) + X Za(x)) Zj + N Zg

“with k' + 1 < 8 < m. We then conclude that

ipx)wr = dEp+Apu?,
(PN 0w) = 0),, -

4. HoLoNoOMIC CONSTRAINTS

We suppose that a Lagrangian system is subjected to holonomic constraints
h; € C*(Q), (1 <1 < m), with m < n. That is, the velocities do not enter
into the constraint equations. In geometrical terms the motion equations are:

inL = dEL + Aldhf s
(10) dhi(X) 0,
dh? (X) 0.

Since dh}(X) = h{ because X is a SODE, we can first study the system as
a Lagrangian system subjected to the non-holonomic constrains h{ and solve
the motion equations

'l:X(.L)L = dEL'*‘)\zdh;},
() {dhs(X) = o,

and later, we impose the constraints h} = 0.

We shall show how a holonomic system is, in some sense, an special case
of a free system.

First of all, notice that M; = T'Q,, where (J; denotes the submanifold
of @ defined by the vanishing of the functions h;. Next, assume that the
matrix C with entries C;; = Z;(h5) is regular.on M; (and hence, on an open
neighborhood of it). The dynamics is then given by the vector field on M,

P(EL) =& — CPéL(h)Z; .

Put ‘ )
A= —C“fL(hi) ,
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and define a new Lagrangian function

L=L-Y Ah}.

A direct computation shows that
Ep, = EL — hiEx:
W[, = wr — oai A dhy — hiwp: .
Hence we get
ipe,)w], = ABL, = hi(iprywai — dExs) + hian: .
But M; =TQ, is defined by the vanishing of A} and h{ which implies that
W], = 4B,

on T'Q);. This result tells us that the constrained system may be considered
as a free Lagrangian system with admissible Lagrangian function I and with
a global dynamics P(&L).

EXAMPLE 4.1. Consider the system given by two ponderous particles P,
and P, of identical mass m = 1 which are joined by a rod of constant length
[ and negligibly small mass. Also, the system is constrained to move in the
vertical plane and only on such manner that the velocity of the midpoint of
the rod is directed along it (see [9]).

Let (z;,z2) and (y1,y2) be the coordinates of P, and P,, respectively. Then
the motion of this system is described by:

1. The regular Lagrangian:

1. . . .
L=g (@ +&+97 +95) —9(p +12) 5

2. The holonomic constraint:

1

hy = 5 [(3"2 - 931)2 + (y2 — y1)2 - lz] ;

3. The non-holonomic constraint:

b2 = (T2 — 1) (Y2 + Y1) — (T2 + Z1) (Y2 — v1) -
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The holonomic constraint h; gives rise to a non-holonomic constraint:

¢ = dhy = (22 — 1) (E2 — £1) — (Y2 — ¥1) (%1 — P2) -

From the free Lagrangian L we obtain

E, = %(ﬁ%+o‘c§+y%’+y§)+g(yl+y2),

wyp = dzy ANdz + dzy AdEy + dy; Adyy +dys Adys

L = d:li'l'd:zi'i'yl 9 + Y25 o _ —(?—“9'2‘-
oz, 0zy oy, Oy, Ot 092

Also, we have that the vector fields Z; and Z, such that izw; = p} where
py = J*deg;, 1 = 1,2, are given by

0 0 0 0

Zy = (e—x)g—(@—z1) 57—+ W2 — )7 — (Y2 — 1) 57—,
8.’131 61‘2 6y1 ayz
0 0 0 0

Zy = (2—)m + W —y)g — (@2 —31) 5 — (T2 — 71) 5 -
o1, 0y U 092

Now, if we evaluate the matrix C = (C;;) on

M, = {(zhm?’ Y1, Y2, &1, T2, Y1, Y2) [ h1 = 0,1 =0, = 0}

c, = &d) Z (¢2) _( 2 0
/e, Zo(¢1) Za(¢2) . 0 —22 )~
After simple manipulations, we deduce that the projector P is given on M;

by the matrix P (see the next page). The projection P(£;) of &, gives the
dynamics of the constrained system on M,

we obtain

. 9  ,. 0 g d
Pr) = 11718 7 '|'$Uz>(9 s + 05— E +y 26y2 12 (T2 — 1) (v2 yl)&bl
9 - _(9_9 ) 2
S =)~ 15— (§ - FCler =2 1)) 5
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5. SYMMETRIES AND CONSTANTS OF THE MOTION

In discussing symmetries and constants of the motion of a Lagrangian sys-
tem subjected to non-holonomic constraints, we shall follow the classification
of Prince [26, 27] (see also [6]).

We first suppose that the matrix C = (Z;(¢;)) is regular. Then, there
exists a unique solution A of the constrained dynamics on M; where

A= (P(¢r))

Thus, we have the following definitions:

/M1 :

DEFINITION 5.1. A function f on C*(M;) is said to be a constant of the
motion of A if Af =0.

DEFINITION 5.2. A dynamical symmetry of A is a vector field X on M,
such that [X,A] = 0.

It is clear that if f is a constant of the motion of A, then X f is also a constant
of the motion of A for any dynamical symmetry X.

Denote by X¢ the complete lift to T'Q) of a vector field X on Q). We shall
introduce the notion of Lie symmetry.

DEFINITION 5.3. A Lie symmetry of A is a vector field X on @ such that
X¢ is tangent to M, and (X°¢),,, is a dynamical symmetry of A.

As it is well-known, there exists a biyective relationship between the con-
stants of the motion of the Euler-Lagrange vector field £ of the free La-
grangian L and certain class of dynamical symmetries, the Cartan symmetries.
The Cartan symmetries for free Lagrangians are Hamiltonian vector fields X g
such that XpFE; = 0 and, in this case, F' is a constant of the motion.

Consider now a constant of the motion F' : TQ — R of &, i.e., (L F = 0.
One easily proves that, if (Z;F'),,, =0 (1 <4 < m) then, since

A= (& —CY¢ () Z;)

we have that A(Fy,, ) = 0 and, thus F,,, is a constant of the motion of A (see
[3]). It follows that

Z;F = _;U';'J(XF) = —(J*d¢i)(XF) = —d¢i(JXF) = "LJXF¢i .

/M1 ’

Therefore, if (Ljx,$:)/,, = 0 we conclude that F), is a constant of the
motion of A. Notice that, in general, (Xr),,, is not a dynamical symmetry
of A and, in fact, we can not assure that Xy be tangent to M; (see [2]).
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EXAMPLE 5.1. We continue with Example 2.1. Since z,vy, 6,, 0, are cyclic
coordinates, there are four Noether symmetries of the free Lagrangian system:
0 0 0 0

e Ty O e T o

which yield four constants of the motion:
fi=mz, fo=my, f3:IIéla f4=1292-

Since Z;(f3) = Z»(f3) = 0 we conclude that f3 is a constant of the motion for
the constrained system.

Our next objective is study the degenerate case, i.e., C is singular. If
we apply the algorithm developed in the previous section, we obtain a final
constraint submanifold M; where solutions of the dynamics exist. Thus, for
any A, (K" +1 < a < m), each vector field X such that

X = (60— €7 (€000) + X" Zale)) Zp +X°Z0)
/M1
is a solution of the motion equations. As in the regular case, if F' is a constant
of the motion of ¢, and (LJXf(l)i)/M =0 (1 <i<m) then F/M, is a constant
f

of the motion of any solution X.

6. HAMILTONIAN FORMALISM

Let T*Q be the cotangent bundle of @ with canonical projection
T T*Q — Q.

Let L : TQ — R be a regular Lagrangian subjected to a set of indepen-
dent non-holonomic constraints ¢; = &;+h?. We will denote by Leg : TQ —
T*Q the Legendre map defined by L:

Leg : (¢*,¢") — (¢*,pa) ,

with py = 0L/0¢*. Since L is regular, Leg is a local diffeomorphism. For
the sake of simplicity, we suppose that L is hyper-regular, that is, Leg is a
global diffeomorphism. If wg is the canonical symplectic form on T*Q, we
have that: Leg*wg = wy. We define the Hamiltonian function H on T*(Q by
H = FE; o0 Leg™*.

Since Leg : TQ — T*Q is a diffeomorphism, the Lagrangian and Hamilto-
nian descriptions are completely equivalent. Thus, the constrained Hamilton
equations are obtained by a direct transportation of the Euler-Lagrange ones.
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If the constrained system is singular, we also develop a constraint algorithm
on the hamiltonian side, and both algorithms are related by the Legendre
transformation, as in the case of singular lagrangians [8, 13, 11, 12].

Since (T'Q,w.) and (T*Q,wg) are symplectic manifolds, we have the Pois-
son brackets { , }, and {, } on T'Q and T*Q, respectively. Moreover, since
Leg*wg = wy, the Legendre transformation is a Poisson map, i.e.,

Leg™{f,g} = {Leg"f, Leg*g}L ,¥f,9 € C*(T"Q) .

Denote by M; and M; the corresponding final constraint submanifolds. Sup-
pose now that M, is given by the vanishing of the constraints x; ,(1 < ' <m/').
We can classify these constraints in two different types. A constraint x of My
is said to be first class if {x, x:} /m, = 0 for each constraint x; of M, and
second class otherwise. In a similar way, we obtain a classification of the
constraints of M.

Denote by wy, and wy;, the restrictions of wy and wg to My and M. Thus,
if all the constraints of M; (resp. M;) are first class then M; (resp. M) is a
coisotropic submanifold of T'Q) (resp. T*Q). Also, if all the constraints of M;
( resp. M) are second class then (M £rwn,) (resp. (M >wiyz,)) is a symplectic
manifold.
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