Some Results on Norm Attaining Bilinear Forms on $L^1[0,1]$

Yun Sung Choi

Department of Mathematics, Pohang University of Science and Technology, Pohang 790, Korea, e-mail: mathchoi@posmath.postech.ac.kr

(Presented by R. Payá)

AMS Subject Class. (1991): 46E30

Received February 5, 1996

We characterize the norm attaining bilinear forms on $L^1[0,1]$, and show that the set of norm attaining ones is not dense in the space of continuous bilinear forms on $L^1[0,1]$.

For a real Banach space X we let $\mathcal{B}(X)$ denote the Banach space of continuous bilinear forms on X, endowed with the norm $\|\varphi\| = \sup\{|\varphi(x,y)| : \|x\| \le 1, \|y\| \le 1\}$. We say that $\varphi \in \mathcal{B}(X)$ attains its norm if there are $x, y \in X$, $\|x\| = \|y\| = 1$ such that $\|\varphi\| = |\varphi(x,y)|$. We let $\mathcal{B}_{na}(X)$ denote the set of all norm attaining ones.

Motivated by the Bishop-Phelps theorem [3] that the set of norm attaining functionals is dense in X^* , we consider a natural question about the denseness of $\mathcal{B}_{na}(X)$. M. D. Acosta, F. J. Aguirre, and R. Payá [1] first answered this question in the negative. They proved that $\mathcal{B}_{na}(G)$ is not dense in $\mathcal{B}(G)$, where G is the Banach space used by W. T. Gowers [6] to show that ℓ_p (1 fails Lindenstrauss' property <math>B [7]. On the other hand, it was shown that $\mathcal{B}_{na}(X)$ is dense in $\mathcal{B}(X)$ for a Banach space X with the Radon-Nikodym property or property (α) [8] by R. Aron, C. Finet, and E. Werner [2], and a Banach space X with a monotone shrinking basis and the Dunford-Pettis property like c_0 by Y. S. Choi and S. G. Kim [5]. This note is an announcement of the main results in [4], where we characterize the norm attaining bilinear forms on $L^1[0,1]$ through an integral representation of a bilinear form on $L^1[0,1]$, and show that $\mathcal{B}_{na}(L^1[0,1])$ is not dense in $\mathcal{B}(L^1[0,1])$. Let I stand for the unit interval [0,1].

THEOREM 1. To each $\varphi \in \mathcal{B}(L^1(I))$ there corresponds a unique f in $L^{\infty}(I \times I)$ such that $\|\varphi\| = \|f\|_{\infty}$ and

$$arphi(g,h) = \int_{I imes I} f(x,y)g(x)h(y) \; dxdy$$

for all $g, h \in L^1(I)$.

For $f \in L^{\infty}(I \times I)$ we set

$$S_f^+ = \{(x, y) \in I \times I : f(x, y) = ||f||_{\infty}\},\$$

and

$$S_f^- = \{(x,y) \in I \times I : f(x,y) = -\|f\|_{\infty}\}.$$

LEMMA 2. Suppose that $f \in L^{\infty}(I \times I)$ with $||f||_{\infty} \neq 0$ and that for any measurable rectangle $A \times B$ in $I \times I$ with positive measure, $|(A \times B) \cap S_f^+| < |A \times B|$ and $|(A \times B) \cap S_f^-| < |A \times B|$. Then

$$\left| \int_{I \times I} f(x, y) g(x) h(y) \, dx dy \right| < \|f\|_{\infty}$$

for all $g, h \in L^1(I)$, $||g||_1 = ||h||_1 = 1$.

THEOREM 3. $\varphi \in \mathcal{B}(L^1(I))$ is norm attaining if and only if for its corresponding $f \in L^\infty(I \times I)$ as in Theorem 1 there is a measurable rectangle $A \times B$ in $I \times I$ with positive measure such that either $|A \times B| = |(A \times B) \cap S_f^+|$ or $|A \times B| = |(A \times B) \cap S_f^-|$.

Lemma 4. There is a measurable subset S of $I \times I$ with positive measure such that for any measurable rectangle $A \times B$ in $I \times I$ with positive measure, $|(A \times B) \cap S| < |A \times B|$.

THEOREM 5. $\mathcal{B}_{na}(L^1(I))$ is not dense in $\mathcal{B}(L^1(I))$.

REFERENCES

- [1] M. D. Acosta, F. Aguirre and R. Payá, There is no bilinear Bishop-Phelps theorem, *Israel J. Math.*, (to appear).
- [2] R. Aron, C. Finet and E. Werner, Norm-attaining *n*-linear forms and the Radon-Nikodym property, in "Proc. 2nd Conf. on Function Spaces (K. Jarosz-editor)". L. N. Pure and Appl. Math., Marcel Dekker 1995, 19–28.

- [3] E. BISHOP AND R. R. PHELPS, A proof that every Banach space is subreflexive, *Bull. Amer. Math. Soc.*, **67** (1961), 97–98.
- [4] Y. S. Choi, Norm attaining bilinear forms on $L^1[0,1]$, preprint.
- [5] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, *J. London Math. Soc.*, to appear.
- [6] W. GOWERS, Symmetric block bases of sequences with large average growth, Israel J. Math., 69 (1990), 129-149.
- [7] J. LINDENSTRAUSS, On operators which attain their norm, Israel J. Math., 1 (1963), 139-148.
- [8] W. SCHACHERMAYER, Norm attaining operators and renormings of Banach spaces, *Israel J. Math.*, 44 (1983), 201-212.