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Here we present an example and some results suggesting that there is
no infinite-dimensional reflexive subspace Z of L; = L;[0,1] such that the
quotient L;/Z is isomorphic to a subspace of L;.

Observe that such a subspace Z cannot be complemented, because L;
has the Dunford-Pettis property [12, II1.D.33]. Moreover, Z is isomorphic
to a subspace of L,[0,1] for some p € (1,2] [12, II1.H.13]; in particular, it
is superreflexive. On the other hand, there are many examples of reflexive
subspaces of L;. For instance, the closed space generated by the Rademacher
functions on [0,1], which are given by 7,(t) = sgnsin2"nt for n € N, is
isomorphic to £, [7, Theorem 2.b.3]. Also, it is known [8, Theorem 2.£.5] that
for every r € (1,2] there exists a subspace of L; isomorphic to L,.

1. THE EXAMPLE

An operator T' € B(X,Y) between Banach spaces X and Y is 1-summing
if it takes weakly unconditionally Cauchy series into absolutely convergent
series. A Banach space X has the Gordon-Lewis property if every l-summing
operator T' € B(X,Y) factors through a L, (u)-space.

The subspaces of L; have the Gordon-Lewis property. Indeed, every 1-
summing operator factors through a L, (u)-space. Therefore, by the extension
property of the L, (1)-spaces, every 1-summing operator defined on a subspace
Z of L; can be extended to the whole space.

PROPOSITION. [9] There exists a subspace Z, of L, isomorphic to £, such
that L,/Z, fails the Gordon-Lewis property. In particular, L,/Z, is not iso-
morphic to a subspace of L.
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This subspace Z, is obtained using an ultraproduct argument applied to
the Kasin decompositions of finite dimensional spaces £5. We do not know,
for example, whether the quotient of L; by the subspace generated by the
Rademacher functions is isomorphic to a subspace of L;.

2. THE RESULTS

Let X and Y be Banach spaces. An operator T' € B(X,Y) is upper
semi-Fredholm if its kernel N(T') is finite dimensional and its range R(T) is
closed. It is tauberian [5] if T**(X**\ X) C Y**\ Y. We denote by F,(X,Y)
and T, (X,Y) the classes of upper semi-Fredholm operators and tauberian
operators from X into Y, respectively. It follows from Theorem 1 (and is not
difficult to see) that F, C 7.

Remark. If Z is an infinite dimensional reflexive subspace of L, then the
quotient map @ : Ly — L;/Z belongs to 7, \ F; [5]. However, it is not
known whether F, (L;, L;) coincides with 7, (L;, L,). In the remaining of the
paper we describe some results suggesting that these two classes coincide. This
would imply that L;/Z is not isomorphic to a subspace of L; when Z is an
infinite dimensional reflexive subspace of L;.

In the following result we give perturbative characterizations of the classes
F, and T,, showing that there are some formal similarities between these two
classes.

THEOREM 1. [4] An operator T € B(X,Y) is upper semi-Fredholm (taube-
rian) if and only if for every compact operator K € B(X,Y) the kernel
N(T - V) is finite-dimensional (reflexive).

In the case of operators from L; into a Banach space, more specific char-
acterizations are avaible.

THEOREM 2. [3] For T € B(L;,Y), the following statements are equiva-
lent:

(1) T is tauberian;
(2) liminf, ||Tf.|| > 0 for every normalized disjoint sequence (f,) in Ly;

(3) there existsr > 0 so that liminf, ||Tf,|| > r for every normalized disjoint
sequence (f,) in Ly;
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(4) there exists s > 0 so that for every f € L, withm({t : f(t) # 0}) <s
and ||f|| = 1 we have ||[T'f]| > s.

This theorem has some interesting consequences: the class T, (L;,Y) is
norm open, every T € T(L,,Y) can be seen a “superposition” of a finite
number of isomorphisms, and every quotient of L; by a reflexive subspace
contains a copy of L;. Observe that, in general, 7, (X,Y) is not open [1].

COROLLARY. (1) For every T € T,(L;,Y) there exists 67 > 0 so that if
A€ B(L,,Y) and ||A|| < 0y then T+ A € T.(L,,Y).

(2) For every T € T(L,,Y) we can find a partition {I;,---,I,} of [0,1]
in subintervals so that the restrictions Ty, (s,) are isomorphisms (into).
In particular, if T, (L,,Y) is non-empty then the space Y contains a
subspace isomorphic to L.

(3) For every reflexive subspace Z of Ly, the quotient L,/Z contains a sub-
space isomorphic to L.

With respect to the last part of Corollary, observe that it is not known
whether L, /Z contains a copy of L; when Z is isomorphic to a dual space (see
[11, page 10]). The answer is positive for Z isomorphic to ¢; [11, Proposition
1.2]. Moreover, the following result of Talagrand shows that the containment
of copies of Ly by L;/Z is quite unstable.

THEOREM 3. [11, Theorem 1.1] There exist two subspaces Y and Z of L,,
both of them isomorphic to ¢;-sums of spaces (not uniformly) isomorphic to
¢y, such that

(1) the spaces L,/Y and L,/Z contain no copies of L, but

(2) the canonical map from L, into L,/Y x L,/Z is an isomorphism into.

Given T € B(X,Y), we consider the operator T : X**/X — Y**/Y
defined by

Note that an operator T' is tauberian if and only if T is injective. Rosen-
thal [10] has recently introduced the strongly tauberian operators as those
operators T' € B(X,Y) for which T is an isomorphism into. Obviously, if T is
strongly tauberian then 7' is tauberian. Moreover, Rosenthal proves that if T
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has a tauberian ultrapower, then it is strongly tauberian. We refer to [2] for
the properties of operators with tauberian ultrapowers. In our case, we have
the following result.

PROPOSITION. An operator T' € B(L,,Y) is tauberian if and only if the
induced operator T : L}*/L; — Y**/Y is an isomorphism into. In this case,
the second conjugate T™** of T is also tauberian.

Remarks. (a) An example of an operator T' € T, (X,Y) such that T** is
not tauberian is given in [1].

(b) It follows from the results in [2] that the ultrapowers of an operator
T € T.(L1,Y) are tauberian.

(c) The proof given in [10] of T € B(X,Y) strongly tauberian implies 7**
strongly tauberian is essentially as follows:

If T € B(X,Y) is strongly tauberian, then T : X**/X — Y**/Y is an iso-
morphism. Moreover, we can identify canonically (X**/X)** with X ****/X**,
and

rfv**(X**/X)** — (Y**/Y)** with T\*; . X****/X** N Y****/Y**.
Then T** is an isomorphism, hence T** is strongly tauberian.

For a Banach space A and a subset S C A, Lebow and Schechter [6] define
the perturbation class P(S) of S in A in the following way.

P(S):={acA:a+seSforall se S}

We say that C C A is an admissible class for S if C CP(S).

Recall that T' € B(X,Y) is strictly singular if no restriction of T' to an
infinite dimensional subspace is an isomorphism, and 7" is weakly precompact
if (T'z,) contains a weakly Cauchy subsequence for every bounded sequence
(zn) C X. The class SS of strictly singular operators is admissible for F,,
and it is a well-known open problem whether P(F,) = S§S [6]. Moreover, the
weakly compact operators form an admissible for 7,. The perturbation class
P(T:(X,Y)) is not well-known in general, but in the case X = L, it coincides
with the class of weakly precompact operators.

PROPOSITION. Let Y be a Banach space such that T,(L,,Y) # 0. An
operator K € B(L,,Y) is weakly precompact if and only if for every operator
T € T:(L,,Y) we have that T + K is also tauberian.
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Since the space L; is weakly sequentially complete, weakly precompact
operators in B(L;, L) are weakly compact, and the Dunford-Pettis property
of L, implies that they coincide with the strictly singular operators.

COROLLARY. P(T.)(L1,L;) = P(F;)(Ly,Ly) = SS(Ly, Ly).

Remark. In some cases the class of weakly precompact operators is not
admissible for 7, (X,Y). For instance, it is not difficult to see that the inclusion
of James’ quasireflexive space J into ¢y is weakly precompact (but not weakly
compact). However, the null operator 0 € B(J, ¢y) is not tauberian.
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