Quotients of L_1 by Reflexive Subspaces *

MANUEL GONZÁLEZ AND ANTONIO MARTÍNEZ-ABEJÓN

Departamento de Matemáticas, Universidad de Cantabria, E-39071 Santander (Spain)
Departamento de Matemáticas, Universidad de Oviedo, E-33007 Oviedo (Spain)

AMS Subject Class. (1991): 46B20, 47A53, 47B38

Here we present an example and some results suggesting that there is no infinite-dimensional reflexive subspace Z of $L_1 \equiv L_1[0,1]$ such that the quotient L_1/Z is isomorphic to a subspace of L_1 .

Observe that such a subspace Z cannot be complemented, because L_1 has the Dunford-Pettis property [12, III.D.33]. Moreover, Z is isomorphic to a subspace of $L_p[0,1]$ for some $p \in (1,2]$ [12, III.H.13]; in particular, it is superreflexive. On the other hand, there are many examples of reflexive subspaces of L_1 . For instance, the closed space generated by the Rademacher functions on [0,1], which are given by $r_n(t) = \operatorname{sgn} \sin 2^n \pi t$ for $n \in \mathbb{N}$, is isomorphic to ℓ_2 [7, Theorem 2.b.3]. Also, it is known [8, Theorem 2.f.5] that for every $r \in (1,2]$ there exists a subspace of L_1 isomorphic to L_r .

1. The example

An operator $T \in \mathcal{B}(X,Y)$ between Banach spaces X and Y is 1-summing if it takes weakly unconditionally Cauchy series into absolutely convergent series. A Banach space X has the Gordon-Lewis property if every 1-summing operator $T \in \mathcal{B}(X,Y)$ factors through a $L_1(\mu)$ -space.

The subspaces of L_1 have the Gordon-Lewis property. Indeed, every 1-summing operator factors through a $L_{\infty}(\mu)$ -space. Therefore, by the extension property of the $L_{\infty}(\mu)$ -spaces, every 1-summing operator defined on a subspace Z of L_1 can be extended to the whole space.

PROPOSITION. [9] There exists a subspace Z_0 of L_1 isomorphic to ℓ_2 such that L_1/Z_0 fails the Gordon-Lewis property. In particular, L_1/Z_0 is not isomorphic to a subspace of L_1 .

^{*}Supported in part by DGICYT Grant PB 94-1052 (Spain)

This subspace Z_0 is obtained using an ultraproduct argument applied to the Kasin decompositions of finite dimensional spaces ℓ_2^n . We do not know, for example, whether the quotient of L_1 by the subspace generated by the Rademacher functions is isomorphic to a subspace of L_1 .

2. The results

Let X and Y be Banach spaces. An operator $T \in \mathcal{B}(X,Y)$ is upper semi-Fredholm if its kernel N(T) is finite dimensional and its range R(T) is closed. It is tauberian [5] if $T^{**}(X^{**} \setminus X) \subset Y^{**} \setminus Y$. We denote by $\mathcal{F}_+(X,Y)$ and $\mathcal{T}_+(X,Y)$ the classes of upper semi-Fredholm operators and tauberian operators from X into Y, respectively. It follows from Theorem 1 (and is not difficult to see) that $\mathcal{F}_+ \subset \mathcal{T}_+$.

Remark. If Z is an infinite dimensional reflexive subspace of L_1 , then the quotient map $Q: L_1 \longrightarrow L_1/Z$ belongs to $\mathcal{T}_+ \setminus \mathcal{F}_+$ [5]. However, it is not known whether $\mathcal{F}_+(L_1, L_1)$ coincides with $\mathcal{T}_+(L_1, L_1)$. In the remaining of the paper we describe some results suggesting that these two classes coincide. This would imply that L_1/Z is not isomorphic to a subspace of L_1 when Z is an infinite dimensional reflexive subspace of L_1 .

In the following result we give perturbative characterizations of the classes \mathcal{F}_+ and \mathcal{T}_+ , showing that there are some formal similarities between these two classes

THEOREM 1. [4] An operator $T \in \mathcal{B}(X,Y)$ is upper semi-Fredholm (tauberian) if and only if for every compact operator $K \in \mathcal{B}(X,Y)$ the kernel N(T + K) is finite-dimensional (reflexive).

In the case of operators from L_1 into a Banach space, more specific characterizations are available.

THEOREM 2. [3] For $T \in \mathcal{B}(L_1, Y)$, the following statements are equivalent:

- (1) T is tauberian;
- (2) $\liminf_n ||Tf_n|| > 0$ for every normalized disjoint sequence (f_n) in L_1 ;
- (3) there exists r > 0 so that $\liminf_n ||Tf_n|| > r$ for every normalized disjoint sequence (f_n) in L_1 ;

(4) there exists s > 0 so that for every $f \in L_1$ with $m(\{t : f(t) \neq 0\}) < s$ and ||f|| = 1 we have ||Tf|| > s.

This theorem has some interesting consequences: the class $\mathcal{T}_+(L_1, Y)$ is norm open, every $T \in \mathcal{T}(L_1, Y)$ can be seen a "superposition" of a finite number of isomorphisms, and every quotient of L_1 by a reflexive subspace contains a copy of L_1 . Observe that, in general, $\mathcal{T}_+(X, Y)$ is not open [1].

- COROLLARY. (1) For every $T \in \mathcal{T}_+(L_1, Y)$ there exists $\delta_T > 0$ so that if $A \in \mathcal{B}(L_1, Y)$ and $||A|| < \delta_T$ then $T + A \in \mathcal{T}_+(L_1, Y)$.
- (2) For every $T \in \mathcal{T}(L_1, Y)$ we can find a partition $\{I_1, \dots, I_n\}$ of [0, 1] in subintervals so that the restrictions $T|_{L_1(I_i)}$ are isomorphisms (into). In particular, if $\mathcal{T}_+(L_1, Y)$ is non-empty then the space Y contains a subspace isomorphic to L_1 .
- (3) For every reflexive subspace Z of L_1 , the quotient L_1/Z contains a subspace isomorphic to L_1 .

With respect to the last part of Corollary, observe that it is not known whether L_1/Z contains a copy of L_1 when Z is isomorphic to a dual space (see [11, page 10]). The answer is positive for Z isomorphic to ℓ_1 [11, Proposition 1.2]. Moreover, the following result of Talagrand shows that the containment of copies of L_1 by L_1/Z is quite unstable.

THEOREM 3. [11, Theorem 1.1] There exist two subspaces Y and Z of L_1 , both of them isomorphic to ℓ_1 -sums of spaces (not uniformly) isomorphic to ℓ_1 , such that

- (1) the spaces L_1/Y and L_1/Z contain no copies of L_1 , but
- (2) the canonical map from L_1 into $L_1/Y \times L_1/Z$ is an isomorphism into.

Given $T \in \mathcal{B}(X,Y)$, we consider the operator $\widetilde{T}: X^{**}/X \longrightarrow Y^{**}/Y$ defined by

$$\tilde{T}(x^{**} + X) := T^{**}(x^{**}) + Y \text{ for every } x^{**} \in X^{**}.$$

Note that an operator T is tauberian if and only if \widetilde{T} is injective. Rosenthal [10] has recently introduced the strongly tauberian operators as those operators $T \in \mathcal{B}(X,Y)$ for which \widetilde{T} is an isomorphism into. Obviously, if T is strongly tauberian then T is tauberian. Moreover, Rosenthal proves that if T

has a tauberian ultrapower, then it is strongly tauberian. We refer to [2] for the properties of operators with tauberian ultrapowers. In our case, we have the following result.

PROPOSITION. An operator $T \in \mathcal{B}(L_1, Y)$ is tauberian if and only if the induced operator $\tilde{T}: L_1^{**}/L_1 \longrightarrow Y^{**}/Y$ is an isomorphism into. In this case, the second conjugate T^{**} of T is also tauberian.

Remarks. (a) An example of an operator $T \in \mathcal{T}_+(X,Y)$ such that T^{**} is not tauberian is given in [1].

- (b) It follows from the results in [2] that the ultrapowers of an operator $T \in \mathcal{T}_+(L_1, Y)$ are tauberian.
- (c) The proof given in [10] of $T \in \mathcal{B}(X,Y)$ strongly tauberian implies T^{**} strongly tauberian is essentially as follows:

If $T \in \mathcal{B}(X,Y)$ is strongly tauberian, then $\widetilde{T}: X^{**}/X \longrightarrow Y^{**}/Y$ is an isomorphism. Moreover, we can identify canonically $(X^{**}/X)^{**}$ with X^{****}/X^{**} , and

$$\widetilde{T}^{**}(X^{**}/X)^{**} \longrightarrow (Y^{**}/Y)^{**} \text{ with } \widetilde{T^{**}}: X^{****}/X^{**} \longrightarrow Y^{****}/Y^{**}.$$

Then $\widetilde{T^{**}}$ is an isomorphism, hence T^{**} is strongly tauberian.

For a Banach space \mathcal{A} and a subset $\mathcal{S} \subset A$, Lebow and Schechter [6] define the perturbation class $P(\mathcal{S})$ of \mathcal{S} in \mathcal{A} in the following way.

$$P(S) := \{ a \in \mathcal{A} : a + s \in S \text{ for all } s \in S \}.$$

We say that $\mathcal{C} \subset A$ is an admissible class for \mathcal{S} if $\mathcal{C} \subset P(\mathcal{S})$.

Recall that $T \in \mathcal{B}(X,Y)$ is strictly singular if no restriction of T to an infinite dimensional subspace is an isomorphism, and T is weakly precompact if (Tx_n) contains a weakly Cauchy subsequence for every bounded sequence $(x_n) \subset X$. The class SS of strictly singular operators is admissible for \mathcal{F}_+ , and it is a well-known open problem whether $P(\mathcal{F}_+) = SS$ [6]. Moreover, the weakly compact operators form an admissible for \mathcal{T}_+ . The perturbation class $P(\mathcal{T}_+(X,Y))$ is not well-known in general, but in the case $X = L_1$ it coincides with the class of weakly precompact operators.

PROPOSITION. Let Y be a Banach space such that $\mathcal{T}_+(L_1,Y) \neq \emptyset$. An operator $K \in \mathcal{B}(L_1,Y)$ is weakly precompact if and only if for every operator $T \in \mathcal{T}_+(L_1,Y)$ we have that T+K is also tauberian.

Since the space L_1 is weakly sequentially complete, weakly precompact operators in $\mathcal{B}(L_1, L_1)$ are weakly compact, and the Dunford-Pettis property of L_1 implies that they coincide with the strictly singular operators.

COROLLARY.
$$P(\mathcal{T}_{+})(L_{1}, L_{1}) = P(\mathcal{F}_{+})(L_{1}, L_{1}) = SS(L_{1}, L_{1}).$$

Remark. In some cases the class of weakly precompact operators is not admissible for $\mathcal{T}_+(X,Y)$. For instance, it is not difficult to see that the inclusion of James' quasireflexive space J into c_0 is weakly precompact (but not weakly compact). However, the null operator $0 \in \mathcal{B}(J,c_0)$ is not tauberian.

References

- [1] ALVAREZ, T., GONZÁLEZ, M., Some examples of tauberian operators, *Proc. Amer. Math. Soc.*, **111** (1991), 1023-1027.
- [2] GONZÁLEZ, M., MARTÍNEZ-ABEJÓN, A., Supertauberian operators and perturbations, Arch. Math., 64 (1995), 423-433.
- [3] GONZÁLEZ, M., MARTÍNEZ-ABEJÓN, A., Tauberian operators on $L_1(\mu)$ spaces, Studia Math., to appear.
- [4] González, M., Onieva, V.M., Characterizations of tauberian operators and other semigroups of operators, *Proc. Amer. Math. Soc.*, **108** (1990), 399–405
- [5] KALTON, N., WILANSKY, A., Tauberian operators on Banach spaces, *Proc. Amer. Math. Soc.*, **57** (1976), 251–255.
- [6] LEBOW, A., SCHECHTER, M., Semigroups of operators and measures of noncompactness, J. Funct. Anal., 7 (1971), 1-26.
- [7] LINDENSTRAUSS, J., TZAFRIRI, L., "Classical Banach spaces I. Sequence spaces", Springer-Verlag, New York, 1977.
- [8] LINDENSTRAUSS, J., TZAFRIRI, L., "Classical Banach spaces II. Function spaces", Springer-Verlag, New York, 1979.
- [9] Pisier, G., "Factorization of linear operators and geometry of Banach spaces", A.M.S. Reg. Conf., 60, Providence R.I., 1986.
- [10] ROSENTHAL, H., On wide-(s) sequences and their applications to certain classes of operators, preprint, (1996).
- [11] TALAGRAND, M., The three-space problem for L^1 , J. Amer. Math. Soc., 3 (1990), 9-29.
- [12] WOJTASZCZYK, P., "Banach spaces for analysts", Cambridge Univ. Press, Cambridge, 1991.

