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The well known Bishop-Phelps Theorem asserts that the set of norm at-
taining linear forms on a Banach space is dense in the dual space [3]. This
note is an outline of recent results by Y.S. Choi [5] and C. Finet and the
author [7], which clarify the relation between two different ways of extending
this theorem.

In the best known approach one considers norm attaining operators. A
bounded linear operator between Banach spaces X and Y attains its norm if
there is 2y € By (the closed unit ball of X) such that

IT(zo)l| = IT|} := sup{[|T ()] : = € Bx}.

In their seminal paper [3], E. Bishop and R. Phelps already addressed the
general question if the set NA(X,Y) of norm attaining operators is dense in
the space L(X,Y) of all bounded linear operators. We refer the reader to [10],
[4], and [8] for some of the main results on this question.

Alternatively, one may stay in the context of scalar-valued functions and
investigate the denseness of norm attaining multilinear forms or polynomials,
a line of research recently initiated by R. Aron, C. Finet, and E. Werner [2].
For simplicity, only the bilinear case will be discussed here. We denote by
B(X) the space of all continuous bilinear forms on a Banach space X, we say
that ¢ € B(X) attains its norm if there are zg,yo € Bx such that

lo(zo, yo)| = llell := sup{|e(z,y)| : z,y € Bx},

and we denote by B,,(X) the set of norm attaining bilinear forms. The first
example of a Banach space X such that B,,(X) is not dense in B(X), a
predual of a Lorentz sequence space, was found in [1]. Sufficient conditions
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for the denseness of norm attaining multilinear forms and polynomials can be
found in [2], [6], and [9].

To see the connection between the two approaches, just consider the canon-
ical identification of B(X) with L(X, X*) where X* is the dual space of X.
The operator T' corresponding to a bilinear form ¢ is given by

[T(2)](y) = e(z,y) (2,9 € X).

We see that the bilinear form ¢ attains its norm if and only if the operator T
attains its norm at a point z € Bx such that T'(z) also attains its norm as a
functional on X. Therefore, T' € NA(X, X*) whenever ¢ € B,,(X), but we
will see that the converse is not true, even in a very simple case. For fixed
z*,y* € X* consider the bilinear form

olz,y) =z ()y"(y) (z,y € X),
which corresponds to the operator T given by
T(z)=z"(z)y" (z€X).

Then T attains its norm whenever z* does, while ¢ attains its norm only when
both z* and y* attain their norms. However, the Bishop-Phelps Theorem
allows replacing y* with a norm attaining functional to get a norm attaining
bilinear form which is arbitrarily close to (.

To summarize the above comments, when identifying bilinear forms with
operators, B,,(X) becomes a subset of NA(X, X*), in general a proper subset,
but there are some reasons to believe that B,,(X) might be dense as soon
as NA(X, X*) is dense, and the “new” question on bilinear forms would be
nothing but a very special case of the “old” problem on operators. Actually,
in all papers dealing with norm attaining bilinear forms the following question
appears in a more or less explicit way (see [2], [1], [5].)

QUESTION. Is there a Banach space X such that NA(X, X*) is dense in
L(X, X*) while B,,(X) is not dense in B(X)?

The following results give an affirmative answer.

THEOREM 1. [5, Theorem 3] The set of norm attaining bilinear forms is
not dense in the space of all continuous bilinear forms on L,[0, 1].

THEOREM 2. [7, Theorem 3] The set of norm attaining operators is dense
in the space of all bounded linear operators from L, [0, 1] into L[0, 1].
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In what follows we will try to point out the main ideas in the proofs of
the above results. In both cases one starts with a useful representation of
the Banach space under consideration, which reduces the problem to nice
questions on Lebesgue measure in the plane. Then, some classical results in
Measure Theory come into play.

By quite standard arguments, the spaces B(L;(I)) and L(Li(I), L (1))
(from now on we write I = [0,1]) can be identified with Lo (I x I). More
concretely, the bilinear form ¢ and the operator T corresponding to a function
h € Loo(I x I) are given by

olf9)= [ Msf(©)g)dsdt (f,9€ Li(D),

[T(](t) = /1 h(s,t)f(s)ds (ace. t€l,f € Ly(I).

Thus, we are actually dealing with (equivalence classes of) essentially bounded
measurable functions on the unit square. The next step is trying to charac-
terize those functions h which correspond to norm attaining bilinear forms
or operators. Actually it suffices to consider the special case of h being the
characteristic function ys of a measurable set S C I x I with positive measure.

Choi proves that the bilinear form corresponding to xs can be approxi-
mated by norm attaining bilinear forms if and only if there are measurable
sets A, B C I, with positive measure, such that the measurable rectangle Ax B
is essentially contained in S, in the sense that

(1) m((A x B)N S) =m(A x B),

where we use m to denote Lebesgue measure in the unit square. With similar
arguments, it is shown in [7, Corollary 2] that the operator corresponding to
Xs attains its norm if and only if there are measurable sets A, B, C I, also
with positive measure, such that

m((A x B,)NS)
m(A x B,)

(2)

In fact, if this property is satisfied by any measurable set S with positive
measure, then the operator corresponding to any simple function will attain
its norm and we can use that simple functions are dense in L (I x I) to get
the denseness of norm attaining operators. Therefore, Theorems 1 and 2 are
consequences of the following properties of Lebesgue measure.
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CLAIM 1. There is a measurable set S C I x I, with positive measure, such
that (1) fails for every measurable rectangle A x B with positive measure.

CrAM 2. For any measurable set S C I x I with positive measure, there
are measurable sets A, B, C I, with positive measure, satisfying (2).

To find the set S required in Claim 1, Choi uses a Cantor-type set C' C [
with positive measure and takes S = {(s,t) € I x I : |s—t| € C}. The proof is
based on a classical theorem due to Steinhaus: If A, B are measurable sets in
the real line, with positive measure, then the difference set A—B = {a—b:a €
A,b € B} has nonempty interior. Now, if Ax B C S we have A—B C CU-C,
but C'U —C has empty interior and we get a contradiction with Steinhaus
Theorem, unless m(A x B) = 0. Unfortunately, if (1) is satisfied, we only have
A Xx B C SUN where m(N) = 0, so one has to be more careful. Actually,
the proof of Steinhaus Theorem gives a somewhat stronger statement which
overcomes this difficulty. We refer to [5] for the rather technical details.

The proof of Claim 2 given in [7] is also based on a classical result, namely
Lebesgue Density Theorem: If E is a measurable set in the real line, then E has
density 1 at almost all its points. More precisely, A(E\6(E)) = A(§(E)\FE) =0,
where A denotes Lebesgue measure in the real line and

MEN[y—hy+h])
2h =1k

Given a measurable set S C I x I with m(S) > 0 we may fix £ € I and
consider the vertical section S, := {¢t € I : (z,t) € §}. It is clear that there
must be some y with 0 < y < 1 such that y € S, for every £ in a set A C I
with positive measure. Lebesgue Density Theorem allows replacing S, with
d(S;) in this assertion, so we actually have y € §(S,) for every z € A (see
[7] for the details). Then, we may take B, = [y — hn,y + h,] where (h,) is a
sequence of positive numbers tending to zero, and we have

A(S. N By)
A Br)

§(E) = {yER:’lLi_r)%

— 1.

for every z € A. Integration over the set A and the Dominated Convergence
Theorem yield (2).
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